Kidney damage represents a frequent event in the course of hypertension, ranging from a benign to a malignant form of nephropathy depending on several factors, that is, individual susceptibility, degree of hypertension, type of etiology and underlying kidney disease. Multiple mechanisms are involved in determination of kidney glomerular, tubular and interstitial injuries in hypertension. The present review article discusses relevant contributory molecular mechanisms underpinning the promotion of hypertensive renal damage, such as the renin-angiotensin-aldosterone system (RAAS), oxidative stress, endothelial dysfunction, and genetic and epigenetic determinants. We highlighted major pathways involved in the progression of inflammation and fibrosis leading to glomerular sclerosis, tubular atrophy and interstitial fibrosis, thus providing a state of the art review of the pathogenetic background useful for a better understanding of current and future therapeutic strategies toward hypertensive nephropathy. An adequate control of high blood pressure, obtained through an appropriate therapeutic intervention, still represents the key strategy to achieve a satisfactory control of renal damage in hypertension. In this regard, we reviewed the impact of currently available antihypertensive pharmacological treatment on kidney damage, with particular regard to RAAS inhibitors. Notably, recent findings underscored the ability of the kidneys to regenerate and to repair tissue injuries through the differentiation of resident embryonic stem cells. Pharmacological modulation of the renal endogenous reparative process (that is, with angiotensin-converting enzyme inhibitors and AT1 angiotensin II receptor blockers), as well as future therapeutic strategies targeted to the renopoietic system, offers interesting perspectives for the management of hypertensive nephropathy.
Our pilot experience highlights the safety and efficacy of denosumab in the treatment of osteoporosis in HD patients, potentially supporting its use to reduce the burden of fractures in this patient population.
Background/Aims: Multiple myeloma (MM) represents 10% of all haematologic malignancies. Renal involvement occurs in 50% of MM patients; of them, 12-20% have acute kidney injury (AKI), with 10% needing dialysis at presentation. While hemodialysis (HD) has no effect upon circulating and tissue levels of monoclonal proteins, novel apheretic techniques aim at removing the paraproteins responsible for glomerular/tubular deposition disease. High cut-off HD (HCO-HD) combined with chemotherapy affords a sustained reduction of serum free light chains (FLC) levels. One alternative technology is haemodiafiltration with ultrafiltrate regeneration by adsorption on resin (HFR–SUPRA), employing a “super high-flux” membrane (polyphenylene S-HF, with a nominal cut-off of 42 kD). Aim of our pilot study was to analyze the effectiveness of HFR-SUPRA in reducing the burden of FLC, while minimizing albumin loss and hastening recovery of renal function in 6 subjects with MM complicated by AKI. Methods: Six HD-dependent patients with MM were treated with 5 consecutive sessions of HFR-SUPRA on a Bellco® monitor, while simultaneously initiating chemotherapy. Levels of albumin and FLC were assessed, calculating the rates of reduction. Renal outcome, HD withdrawal and clinical follow-up or death were recorded. Results: All patients showed a significant reduction of FLC, whereas serum albumin concentration remained unchanged. In three, HD was withdrawn, switching to a chemotherapy alone regimen. The other patients remained HD-dependent and died shortly thereafter for cardiovascular complications. Conclusion: Our study suggests that HFR-SUPRA provides a rapid and effective reduction in serum FLC in patients with MM and AKI, while minimizing the loss of albumin. When started early in combination with chemotherapy, blood purification by HFR-SUPRA was followed by the recovery of renal function in half of the patients treated.
We conclude that a successful reduction of radioactivity, without dispersing its therapeutic efficacy, can be obtained with daily hemodialysis with a CRRT machine in patients in isolation treated with 131I. A therapeutic model is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.