Liquid biopsy is an emerging technology with a potential role in the screening and early detection of lung cancer. Several liquid biopsy-derived biomarkers have been identified and are currently under ongoing investigation. In this article, we review the available data on the use of circulating biomarkers for the early detection of lung cancer, focusing on the circulating tumor cells, circulating cell-free DNA, circulating micro-RNAs, tumor-derived exosomes, and tumor-educated platelets, providing an overview of future potential applicability in the clinical practice. While several biomarkers have shown exciting results, diagnostic performance and clinical applicability is still limited. The combination of different biomarkers, as well as their combination with other diagnostic tools show great promise, although further research is still required to define and validate the role of liquid biopsies in clinical practice.
As the human ovarian follicle enlarges in the course of a regular cycle or following controlled ovarian stimulation, the changes in its structure reveal the oocyte environment composed of cumulus oophorus cells and the follicular fluid (FF).In contrast to the dynamic nature of cells, the fluid compartment appears as a reservoir rich in biomolecules. In some aspects, it is similar to the plasma, but it also exhibits differences that likely relate to its specific localization around the oocyte. The chemical composition indicates that the follicular fluid is able to detect and buffer excessive amounts of reactive oxygen species, employing a variety of antioxidants, some of them components of the intracellular milieu.An important part is played by albumin through specific cysteine residues. But the fluid contains other molecules whose cysteine residues may be involved in sensing and buffering the local oxidative conditions. How these molecules are recruited and regulated to intervene such process is unknown but it is a critical issue in reproduction.In fact, important proteins in the FF, that regulate follicle growth and oocyte quality, exhibit cysteine residues at specific points, whose untoward oxidation would result in functional loss. Therefore, preservation of controlled oxidative conditions in the FF is a requirement for the fine-tuned oocyte maturation process. In contrast, its disturbance enhances the susceptibility to the establishment of reproductive disorders that would require the intervention of reproductive medicine technology.
EGFR and KRAS are the most frequently mutated genes in lung cancer, being active research topics in targeted therapy. The biopsy is the traditional method to genetically characterise a tumour. However, it is a risky procedure, painful for the patient, and, occasionally, the tumour might be inaccessible. This work aims to study and debate the nature of the relationships between imaging phenotypes and lung cancer-related mutation status. Until now, the literature has failed to point to new research directions, mainly consisting of results-oriented works in a field where there is still not enough available data to train clinically viable models. We intend to open a discussion about critical points and to present new possibilities for future radiogenomics studies. We conducted high-dimensional data visualisation and developed classifiers, which allowed us to analyse the results for EGFR and KRAS biological markers according to different combinations of input features. We show that EGFR mutation status might be correlated to CT scans imaging phenotypes; however, the same does not seem to hold for KRAS mutation status. Also, the experiments suggest that the best way to approach this problem is by combining nodule-related features with features from other lung structures. Lung cancer is the cancer type leading the incidence and mortality rates 1,2. This is linked to the fact that it is often diagnosed in an advanced stage, with 15% or less chance of a 5-year survival 3 , which magnifies the importance of treatments for advanced-stage disease. In Non-small-cell lung cancer (NSCLC), which constitutes 85% of all cases of lung cancer, certain genomic biomarkers are now considered predictive biomarkers and critical for the prognostic 4. Epidermal Growth Factor Receptor (EGFR) and Kristen Rat Sarcoma Viral Oncogene Homolog KRAS are the most frequently mutated gene in lung cancer 5. EGFR mutated is present in 15 to 50% of NSCLC patients from never-smokers 5. The two most common EGFR mutations (deletions in exon 19 and the single amino acid substitution L858R in exon 21) correspond to approximately 85% of the EGFR mutations in NSCLC. The other low frequency mutations include: point mutations, deletions, insertions, and duplications correspond to approximated 15% of EGFR mutations in NSCLC 6. Unlike the previous marker, KRAS is associated with tobacco use, with only 5 to 10% of KRAS-mutant lung cancers arising in never or light smokers 5,7. Surgically treated NSCLC patients with EGFR mutations showed better disease-free survival (DFS) and overall survival (OS) and the opposite was verified for KRAS, with worse DFS and OS 8. For cytotoxic chemotherapy, the role of EGFR and KRAS as a predictive marker is still unclear 9 ; however, it appears that mutant KRAS may predict a lack of response to chemotherapy 10. Regarding target therapy, tumour driver mutations have reliable predictive value and, in fact, they guide treatment decision in clinics 11. EGFR gene is a paradigmatic example, since its activating mutations, namely those loca...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.