Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.
Acid pH induces the yeast-to-mycelium transition in haploid cells of Ustilago maydis. We tested two signal transduction pathways known to be involved in dimorphism for roles in acid-induced filamentation. In wild-type cells intracellular cAMP levels were reduced under acid growth. A mutant defective in the regulatory subunit of PKA, ubc1, failed to respond to acid induction on solid medium, but in liquid medium showed a mycelial phenotype at acid pH. Mutants in the pheromone-responsive MAP kinase pathway lost the capacity to grow as mycelium at acid pH, while a mutant in the pheromone response-transcriptional regulator, prf1, behaved as wild-type. Filamentation by both ubc1 and prf1 mutants was inhibited by addition of cAMP. A putative MAP kinase cascade adaptor protein gene, ubc2, complemented a previously identified myc mutant strain defective in pH-induced myceliation. These results indicate that pH-dependent dimorphism is regulated by two known signaling pathways but that an effector for cAMP signaling alternative to Ubc1 is present in U. maydis and that Prf1 is not the sole downstream target of MAP kinase signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.