Leishmaniasis, resulting from infection with the protozoan parasite Leishmania, consists of a wide spectrum of clinical manifestations, from healing cutaneous lesions to fatal visceral infections. A particularly severe form of cutaneous leishmaniasis, termed mucosal leishmaniasis, exhibits decreased IL-10 levels and an exaggerated inflammatory response that perpetuates the disease. Using a mouse model of leishmaniasis, we investigated what cytokines contribute to increased pathology when IL-10-mediated regulation is absent. Leishmania major infected C57BL/6 mice lacking IL-10 regulation developed larger lesions than controls, but fewer parasites. Both IFN-γ and IL-17 levels were substantially elevated in mice lacking the capacity to respond to IL-10. IFN-γ promoted an increased infiltration of monocytes, while IL-17 contributed to an increase in neutrophils. Surprisingly, however, we found that IFN-γ did not contribute to increased pathology, but instead regulated the IL-17 response. Thus, blocking IFN-γ led to a significant increase in IL-17, neutrophils and disease. Similarly, the production of IL-17 by cells from leishmaniasis patients was also regulated by IL-10 and IFN-γ. Additional studies found that the IL-1 receptor was required for both the IL-17 response and increased pathology. Therefore, we propose that regulating IL-17, possibly by downregulating IL-1β, may be a useful approach for controlling immunopathology in leishmaniasis.
Experimental models of infection with Leishmania spp. have provided knowledge of several immunological events involved in the resistance mechanism used by the host to restrain parasite growth. It is well accepted that concomitant immunity exists, and there is some evidence that it would play a major role in long-lasting acquired resistance to infection. In this paper, the resistance to Leishmania amazonensis infection in C57BL/6 mice infected with Leishmania major was investigated. C57BL/6 mice, which spontaneously heal lesions caused by infection with L. major, were infected with L. amazonensis at different times before and after L. major. We demonstrated that C57BL/6 mice previously infected with L. major restrain pathogenic responses induced by L. amazonensis infection and decrease parasite burdens by one order of magnitude. Co-infected mice showed production of IFN-gamma in lesions similar to mice infected solely with L. major, but higher TNF-alpha and nitric oxide synthase (iNOS) mRNA expression was observed. Surprisingly, the restrained pathogenic response was not related to IL-10 production, as evidenced by lower levels of both mRNA, protein expression in lesions from co-infected mice and in co-infections in IL-10(-/-) mice. Examination of the inflammatory infiltrate at the site of infection showed a reduced number of monocytes and lymphocytes in L. amazonensis lesions. Additionally, differential production of the CCL3/MIP-1 alpha and CCL5/RANTES was observed. We suggest that the control of lesion progression caused by L. amazonensis in C57BL/6 mice pre-infected with L. major is related to the induction of a down-regulatory environment at the site of infection with L. amazonensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.