Colonization surface antigens (CSs) represent key virulence-associated factors of enterotoxigenic Escherichia coli (ETEC) strains. They are required for gut colonization, the first step of the diarrhoeal disease process induced by these bacteria. One of the most prevalent CSs is CS21, or longus, a type IV pili associated with bacterial self-aggregation, protection against environmental stresses, biofilm formation and adherence to epithelial cell lines. The objectives of this study were to assess the role of CS21 in adherence to primary intestinal epithelial cells and to determine if CS21 contributes to the pathogenesis of ETEC infection in vivo. We evaluated adherence of a CS21-expressing wild-type ETEC strain and an isogenic CS21-mutant strain to pig-derived intestinal cell lines. To determine the role of CS21 in pathogenesis we used the above ETEC strains in a neonatal mice challenge infection model to assess mortality. Quantitative adherence assays confirmed that ETEC adheres to primary intestinal epithelial cells lines in a CS21-dependent manner. In addition, the CS21-mediated ETEC adherence to cells was specific as purified LngA protein, the CS21 major subunit, competed for binding with the CS21-expressing ETEC while specific anti-LngA antibodies blocked adhesion to intestinal cells. Neonatal DBA/2 mice died after intra-stomach administration of CS21-expressing strains while lack of CS21 expression drastically reduced the virulence of the wild-type ETEC strain in this animal model. Collectively these results further support the role of CS21 during ETEC infection and add new evidence on its in vivo relevance in pathogenesis.
Background Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work are to evaluate B. pertussis infection on highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. Methods Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. Results PHAE and HBE cells infected with B. pertussis wild type strain revealed bacterial adherence to cell’s apical surface and bacterial induced cytoskeleton changes and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthemore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. Conclusions The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo.
The entry of a cell into DNA synthesis is a critical entry, but the way in which this enzyme promotes DNA synthesis is poorly understood because few substrates regulation point for all living cells. A number of cyclins have been identified. We are currently using a variety and cyclin-dependent kinases (CDKs) have been impliof techniques to identify new substrates for cyclin cated in the G1/S phase cell cycle transition. E/cdk2. Two novel complexes have been identified: the The D-type cyclins and their kinase partners CDK4 U2 complex of the splicing machinery and also compoand CDK6 are involved in regulating the entry of cells nents of the SWI/SNF chromatin remodeling apparatus. into the cell cycle from a quiescent state. It is believed that unique mechanisms may serve to regulate these REFERENCES early induced cyclin-dependent kinases. We have observed that in addition to post-translational modifica-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.