The external ear is composed of elastic cartilage. Microtia is a congenital malformation of the external ear that involves a small reduction in size or a complete absence. The aim of tissue engineering is to regenerate tissues and organs clinically implantable based on the utilization of cells and biomaterials. Remnants from microtia represent a source of cells for auricular reconstruction using tissue engineering. To examine the macromolecular architecture of microtia cartilage and behavior of chondrocytes, in order to enrich the knowledge of this type of cartilage as a cell reservoir. Auricular cartilage remnants were obtained from pediatric patients with microtia undergoing reconstructive procedures. Extracellular matrix composition was characterized using immunofluorescence and histological staining methods. Chondrocytes were isolated and expanded in vitro using a mechanical-enzymatic protocol. Chondrocyte phenotype was analyzed using qualitative PCR. Microtia cartilage preserves structural organization similar to healthy elastic cartilage. Extracellular matrix is composed of typical cartilage proteins such as type II collagen, elastin and proteoglycans. Chondrocytes displayed morphological features similar to chondrocytes derived from healthy cartilage, expressing SOX9, COL2 and ELN, thus preserving chondral phenotype. Cell viability was 94.6 % during in vitro expansion. Elastic cartilage from microtia has similar characteristics, both architectural and biochemical to healthy cartilage. We confirmed the suitability of microtia remnant as a reservoir of chondrocytes with potential to be expanded in vitro, maintaining phenotypical features and viability. Microtia remnants are an accessible source of autologous cells for auricular reconstruction using tissue engineering strategies.
Wound healing can result in the development of keloid scars that contain atypical fibroblasts and an overabundance of extracellular matrix components. Hyperbaric oxygenation (HBO) refers to exposure to pure oxygen under increased atmospheric pressure and is recognized as a valuable supplementary method of treatment for problematic wounds. The effect of HBO in the expression of insulin-like growth factor type 1 (ILGF-1) and transforming growth factor β (TGF-β) messenger RNAs was determined by semiquantitative RT-PCR in fibroblasts obtained from keloid scars and nonwound involved skin fibroblast from the same patient. ILGF-1 and TGF-β are the principal mitogens during wound regeneration. We found a decrease in the growth of fibroblasts and in the expression of ILGF-1 and TGF-β messengers in keloid and nonkeloid fibroblast after chronic exposition to hyperbaric oxygenation compared with normal oxygen partial pressure.
The number of lipoaugmentation procedures, and specifically the number of gluteal lipoaugmentations, has risen dramatically over the past decade. Though gluteal lipoaugmentation confers a pleasing hourglass profile with seemingly minimal risk, its risks have not been fully realized. We report the case of a healthy 35-year-old woman who suffered axonotmesis of the sciatic nerve due to direct lipoinjection into and around the nerve sheath. She was treated expectantly in our Peripheral Nerve Clinic for 3 months without evidence of improvement. Subsequently, she underwent internal and external neurolysis. Eighteen weeks after her neurolysis, she continues to demonstrate signs of severe peripheral neuropathy, but has begun to show signs of nerve regeneration. This is the first reported case of sciatic nerve axonotmesis due to gluteal lipoaugmentation. It highlights the importance of a thorough knowledge of gluteal anatomy and a consciousness of the risks involved with lipoaugmentation of deep structures.
In Mexico there are no previous studies on Borrelia infection and its relationship between PRS or LMCS. Our result showed a lack of association of either clinical entities with anti-Borrelia-antibodies. Former reports of this association may suggest coincidental findings without causal relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.