In December 2018, the National Aeronautics and Space Administration (NASA) Interior exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission deployed a seismometer on the surface of Mars. In preparation for the data analysis, in July 2017, the marsquake service initiated a blind test in which participants were asked to detect and characterize seismicity embedded in a one Earth year long synthetic data set of continuous waveforms. Synthetic data were computed for a single station, mimicking the streams that will be available from InSight as well as the expected tectonic and impact seismicity, and noise conditions on Mars (Clinton et al., 2017). In total, 84 teams from 20 countries registered for the blind test and 11 of them submitted their results in early 2018. The collection of documentations, methods, ideas, and codes submitted by the participants exceeds 100 pages. The teams proposed well established as well as novel methods to tackle the challenging target of building a global seismicity catalog using a single station. This article summarizes the performance of the teams and highlights the most successful contributions.
Marchenko focusing and imaging are novel methods for correctly handling multiple scattered energy while processing seismic data. However, strict requirements in the acquisition geometry, specifically co-location of sources and receivers as well as dense and regular sampling, currently constrain their practical applicability. We reformulate the Marchenko equations to handle the case where there are gaps in the source geometry while receiver sampling remains regular (or the opposite, by means of reciprocity). Using synthetic data based on a velocity model that produces strong interbed multiples, we test different solvers for the newly formulated inversion problem and we compare these results to results obtained by applying standard Marchenko inversion to a previously reconstructed dataset. When using the unreconstructed dataset, the ability of the Marchenko equations to retrace multiple reflected energy deteriorates. Sparsity-promoting Marchenko inversion, while improving the appearance of focusing functions, barely decreases multiple leakage in gathers and does not visibly improve the final image when compared to standard least-squares inversion. On the other hand, reconstructing the wavefield in advance restores the proper functioning of the Marchenko methods. Further, we test a joint inversion technique designed for time-lapse data with non-repeated geometries and originally intended to be solved using sparsity-promoting inversion. Motivated by our previous results, we compare images produced by this method to images produced by solving the same joint inversion problem without sparsity constraint. We find that the joint inversion alone hardly improves the resulting images but, when combined with the sparsity constraint, it leads to better noise and multiple suppression and produces a clean time-lapse image. Overall, none of the results from sparsity-promoting inversion techniques match the results obtained when reconstructing the wavefield in advance. We show that this can be explained by the comparatively slow convergence rate of sparsity-promoting Marchenko inversion.
We present an adaptive approach to seismic modeling by which the computational cost of a 3D simulation can be reduced while retaining resolution and accuracy. This Azimuthal Complexity Adaptation (ACA) approach relies upon the inherent smoothness of wavefields around the azimuth of a source-centered cylindrical coordinate system. Azimuthal oversampling is thereby detected and eliminated. The ACA method has recently been introduced as part of AxiSEM3D, an open-source solver for global seismology. We employ a generalization of this solver which can handle local-scale Cartesian models, and which features a combination of an absorbing boundary condition and a sponge boundary with automated parameter tuning. The ACA method is benchmarked against an established 3D method using a model featuring bathymetry and a salt body. We obtain a close fit where the models are implemented equally in both solvers and an expectedly poor fit otherwise, with the ACA method running an order of magnitude faster than the classic 3D method. Further, we present maps of maximum azimuthal wavenumbers that are created to facilitate azimuthal complexity adaptation. We show how these maps can be interpreted in terms of the 3D complexity of the wavefield and in terms of seismic resolution. The expected performance limits of the ACA method for complex 3D structures are tested on the SEG/EAGE salt model. In this case, ACA still reduces the overall degrees of freedom by 92% compared to a complexity-blind AxiSEM3D simulation. In comparison with the reference 3D method, we again find a close fit and a speed-up of a factor 7. We explore how the performance of ACA is affected by model smoothness by subjecting the SEG/EAGE salt model to Gaussian smoothing. This results in a doubling of the speed-up. ACA thus represents a convergent, versatile and efficient method for a variety of complex settings and scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.