Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
We initially performed a mutation screen of the coding region of the MC4R in 808 extremely obese children and adolescents and 327 underweight or normal-weight controls allowing for a case-control study. A total of 16 different missense, nonsense, and frameshift mutations were found in the obese study group; five of these have not been observed previously. In vitro assays revealed that nine [the haplotype (Y35X; D37V) was counted as one mutation] of the 16 mutations led to impaired cAMP responses, compared with wild-type receptor constructs. In contrast, only one novel missense mutation was detected in the controls, which did not alter receptor function. The association test based on functionally relevant mutations was positive (P = 0.006, Fisher's exact test, one-sided). We proceeded by screening a total of 1040 parents of 520 of the aforementioned obese young index patients to perform transmission disequilibrium tests. The 11 parental carriers of functionally relevant mutations transmitted the mutation in 81.8% (P = 0.033; exact one-sided McNemar test). These results support the hypothesis that these MC4R mutations represent major gene effects for obesity.
Several rare mutations in the melanocortin-4 receptor gene (MC4R) predispose to obesity. For the most common missense variant V103I (rs2229616), however, the previously reported similar carrier frequencies in obese and nonobese individuals are in line with in vitro studies, which have not shown a functional implication of this variant. In the present study, we initially performed a transmission/disequilibrium test on 520 trios with obesity, and we observed a lower transmission rate of the I103 allele (P=.017), which was an unexpected finding. Therefore, we initiated two large case-control studies (N=2,334 and N=661) and combined the data with those from 12 published studies, for a total of 7,713 individuals. The resulting meta-analysis provides evidence for a negative association of the I103 allele with obesity (odds ratio 0.69; 95% confidence interval 0.50-0.96; P=.03), mainly comprising samples of European origin. Additional screening of four other ethnic groups showed comparable I103 carrier frequencies well below 10%. Genomic sequencing of the MC4R gene revealed three polymorphisms in the noncoding region that displayed strong linkage disequilibrium with V103I. In our functional in vitro assays, the variant was indistinguishable from the wild-type allele, as was the result in previous studies. This report on an SNP/haplotype that is negatively associated with obesity expands the successful application of meta-analysis of modest effects in common diseases to a variant with a carrier frequency well below 10%. The respective protective effect against obesity implies that variation in the MC4R gene entails both loss and gain of function.
Despite the importance of gut microbiota for broiler performance and health little is known about the composition of this ecosystem, its development and response towards bacterial infections. Therefore, the current study was conducted to address the composition and structure of the microbial community in broiler chickens in a longitudinal study from day 1 to day 28 of age in the gut content and on the mucosa. Additionally, the consequences of a Campylobacter (C.) jejuni infection on the microbial community were assessed. The composition of the gut microbiota was analyzed with 16S rRNA gene targeted Illumina MiSeq sequencing. Sequencing of 130 samples yielded 51,825,306 quality-controlled sequences, which clustered into 8285 operational taxonomic units (OTUs; 0.03 distance level) representing 24 phyla. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Tenericutes were the main components of the gut microbiota, with Proteobacteria and Firmicutes being the most abundant phyla (between 95.0 and 99.7% of all sequences) at all gut sites. Microbial communities changed in an age-dependent manner. Whereas, young birds had more Proteobacteria, Firmicutes, and Tenericutes dominated in older birds (>14 days old). In addition, 28 day old birds had more diverse bacterial communities than young birds. Furthermore, numerous significant differences in microbial profiles between the mucosa and luminal content of the small and large intestine were detected, with some species being strongly associated with the mucosa whereas others remained within the luminal content of the gut. Following oral infection of 14 day old broiler chickens with 1 × 108 CFU of C. jejuni NCTC 12744, it was found that C. jejuni heavily colonized throughout the small and large intestine. Moreover, C. jejuni colonization was associated with an alteration of the gut microbiota with infected birds having a significantly lower abundance of Escherichia (E.) coli at different gut sites. On the contrary, the level of Clostridium spp. was higher in infected birds compared with birds from the negative controls. In conclusion, the obtained results demonstrate how the bacterial microbiome composition changed within the early life of broiler chickens in the gut lumen and on the mucosal surface. Furthermore, our findings confirmed that the Campylobacter carrier state in chicken is characterized by multiple changes in the intestinal ecology within the host.
In spite of the drastic oil price collapse in the second half of 2014 resulting in a price below 30 $/barrel in January 2016 1 , the exploration of promising renewable energy sources for the Abstract: Water splitting allows the storage of solar energy into chemical bonds (H 2 +O 2 ) and will help to implement the urgently needed replacement of limited available fossil fuels. Particularly in neutral environment electrochemically initiated water splitting suffers from low efficiency due to high overpotentials (η) caused by the anode. Electro-activation of X20CoCrWMo10-9, a Co-based tool steel resulted in a new composite material (X20CoCrWMo10-9//Co 3 O 4 ) that catalyzes the anode half-cell reaction of water electrolysis with a so far-, unequalled effectiveness. The current density achieved with this new anode in pH 7 corrected 0.1 M phosphate buffer is over a wide range of η around 10 times higher compared to recently developed, up-to-date electrocatalysts and represents the benchmark performance advanced catalysts show in regimes that support water splitting significantly better than pH 7 medium. X20CoCrWMo10-9//Co 3 O 4 exhibited electrocatalyticproperties not only at pH 7, but also at pH 13, which is much superior to the ones of IrO 2 -RuO 2 , single-phase Co 3 O 4 -or Fe/Ni-based catalysts. Both XPS and FT-IR experiments unmasked Co 3 O 4 as the dominating compound on the surface of the X20CoCrWMo10-9//Co 3 O 4 composite. Upon a comprehensive dual beam FIB-SEM (focused ion beam-scanning electron microscopy) study we could show that the new composite does not exhibit a classical substrate-layer structure due to the intrinsic formation of the Co-enriched outer zone. This structural particularity is basically responsible for the outstanding electrocatalytic OER performance.2 future is one of the significant challenges for scientists and engineers concerned with energy issues research. Splitting of water into hydrogen and oxygen by exploiting solar energy transforms water to an inexhaustible and environmental friendly fuel source 2,3,4,5,6,7,8,9 .Electrocatalytically initiated hydrogen-and oxygen formation from water is considered an important realization of this solar to fuel conversion route 10,11,12 but is typically hampered by the high overpotentials oxygen evolution on the anode side goes with 13,14 . This is particularly true when the electrochemical cleavage of more or less untreated water is intended-; hence, when the splitting procedure is carried out at neutral pH value. 17,18,19,20,21,22,23,24 . Scheme 1 gives some idea of the position of current heterogeneous catalysts in terms of their efficiency regarding OER in neutral regime. The significant improvement of the voltage-current behavior can be taken from both-, the non-steady state ( Figure 1a) as well as the steady state polarization (Figure 1b) experiments. Results OER properties in neutral mediumThe CV of sample Co-300 shows along the entire curve substantially stronger current to voltage ratio than the CV of sample Co and reached, at the upper...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.