Introduction: Oncolytic virotherapy is a selective and powerful tool for cancer treatment. Studies proving the ability of oncolytic viruses (OVs) to target and rapidly kill cancer cells have led to approval of H101 and Imlygic®. Both these OVs are restricted to intratumoral administration into cancer lesions. Despite promising preclinical results, systemic delivery of OV has shown limited success in patients due to a knockdown in infectivity, as a result of rapid immune-mediated neutralization, and poor penetration into tumors. Areas covered: This review catalogs the techniques used to enhance OV delivery. Firstly, insights from clinical trials of OV provide evidence of the need for enhanced delivery strategies. Secondly, the techniques applied to overcome the challenges highlighted by clinical trial data (i.e. suboptimal pharmacokinetics, antiviral immune responses, and poor penetration into solid tumors) are reviewed. Expert opinion: For OV to gain traction and convert potential into value, researchers focussed on showing clinical and commercial viability following intratumoral injection. For the technology to mature and become applicable across a wider range of patients/cancer indications, amenability to systemic delivery is required. This may be achieved using strategies that modulate the OV by genetic or chemical means and/or that alter the physiology of target tumors. ARTICLE HISTORY
Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.
Vaccinia virus (VV) is a powerful tool for cancer treatment with the potential for tumor tropism, efficient cell-to-cell spread, rapid replication in cancer cells, and stimulation of anti-tumor immunity. It has a well-defined safety profile and is being assessed in late-stage clinical trials. However, VV clinical utility is limited by rapid bloodstream neutralization and poor penetration into tumors. These factors have often restricted its route of delivery to intratumoral or intrahepatic artery injection and may impede repeat dosing. Chemical stealthing improves the pharmacokinetics of non-enveloped viruses, but it has not yet been applied to enveloped viruses such as VV. In the present study, amphiphilic polymer was used to coat VV, leading to reduced binding of a neutralizing anti-VV antibody (81.8% of polymer-coated VV [PCVV] staining positive versus 97.1% of VV [p = 0.0038]). Attachment of anti-mucin-1 (aMUC1) targeting antibody, to give aMUC1-PCVV, enabled binding of the construct to MUC1. In high MUC1 expressing CAPAN-2 cells, infection with PCVV was reduced compared to VV, while infection was restored with aMUC1-PCVV. Pharmacokinetics of aMUC1-PCVV, PCVV, and VV were evaluated. After intravenous (i.v.) injection of 1 × 10 8 viral genomes (VG) or 5 × 10 8 VG, circulation time for PCVV and aMUC1-PCVV was increased, with ~5-fold higher circulating dose at 5 min versus VV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.