BackgroundZebrafish may prove to be one of the best vertebrate models for innate immunology. These fish have sophisticated immune components, yet rely heavily on innate immune mechanisms. Thus, the development and characterization of mutant and/or knock out zebrafish are critical to help define immune cell and immune gene functions in the zebrafish model. The use of Severe Combined Immunodeficient (SCID) and recombination activation gene 1 and 2 mutant mice has allowed the investigation of the specific contribution of innate defenses in many infectious diseases. Similar zebrafish mutants are now being used in biomedical and fish immunology related research. This report describes the leukocyte populations in a unique model, recombination activation gene 1-/- mutant zebrafish (rag1 mutants).ResultsDifferential counts of peripheral blood leukocytes (PBL) showed that rag1 mutants had significantly decreased lymphocyte-like cell populations (34.7%) compared to wild-types (70.5%), and significantly increased granulocyte populations (52.7%) compared to wild-types (17.6%). Monocyte/macrophage populations were similar between mutants and wild-types, 12.6% and 11.3%, respectively. Differential leukocyte counts of rag1 mutant kidney hematopoietic tissue showed a significantly reduced lymphocyte-like cell population (8%), a significantly increased myelomonocyte population (57%), 34.8% precursor cells, and 0.2% thrombocytes, while wild-type hematopoietic kidney tissue showed 29.4% lymphocytes/lymphocyte-like cells, 36.4% myelomonocytes, 33.8% precursors and 0.5% thrombocytes.Flow cytometric analyses of kidney hematopoietic tissue revealed three leukocyte populations. Population A was monocytes and granulocytes and comprised 34.7% of the gated cells in rag1 mutants and 17.6% in wild-types. Population B consisted of hematopoietic precursors, and comprised 50% of the gated cells for rag1 mutants and 53% for wild-types. Population C consisted of lymphocytes and lymphocyte-like cells and comprised 7% of the gated cells in the rag1 mutants and 26% in the wild-types.Reverse transcriptase polymerase chain reaction (RT-PCR) assays demonstrated rag1 mutant kidney hematopoietic tissue expressed mRNA encoding Non-specific Cytotoxic cell receptor protein-1 (NCCRP-1) and Natural Killer (NK) cell lysin but lacked T cell receptor (TCR) and immunoglobulin (Ig) transcript expression, while wild-type kidney hematopoietic tissue expressed NCCRP-1, NK lysin, TCR and Ig transcript expression.ConclusionOur study demonstrates that in comparison to wild-type zebrafish, rag1 mutants have a significantly reduced lymphocyte-like cell population that likely includes Non-specific cytotoxic cells (NCC) and NK cells (and lacks functional T and B lymphocytes), a similar macrophage/monocyte population, and a significantly increased neutrophil population. These zebrafish have comparable leukocyte populations to SCID and rag 1 and/or 2 mutant mice, that possess macrophages, natural killer cells and neutrophils, but lack T and B lymphocytes. Rag1 mutant zebrafis...
SummaryThe use of the visible implant elastomer (VIE) tagging system in zebrafish (Danio rerio) was examined. Two tag orientations (horizontal and vertical) at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch). Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus) and 5 tag colors (yellow, red, pink, orange, blue) were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year) and multiple tagging sites (right and left of dorsal fin and pectoral fin base) were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/−) zebrafish was evaluated after VIE tagging.The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch). VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish.The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.
Zebrafish (also known as zebra danio) Danio rerio were injected intramuscularly with Edwardsiella ictaluri at doses of 6 x 10(3), 6 x 10(4), or 6 x 10(5) colony-forming units per gram (CFU/g) or sterile phosphate-buffered saline (sham) or were not injected. Mortality occurred from 2 to 5 d postinjection (dpi) at rates of 0, 76.6, and 81.3% for the low, medium, and high doses, respectively, and E. ictaluri was isolated from dead fish. Survivors were sampled at 10 dpi and E. ictaluri was not isolated. Sham-injected and noninjected controls did not suffer mortality. Histopathology trials were performed in which zebrafish were injected with 1 x 10(4) CFU/g or sham-injected and sampled at 12, 24, 48, 72, and 96 h postinjection for histological interpretation. Collectively, these zebrafish demonstrated increasing severity of splenic, hepatic, cardiac, and renal interstitial necrosis over time. To evaluate the progression of chronic infection, zebrafish were injected with 1 x 10(2) CFU/g and held for 1 month postinjection. Beginning at 12 dpi and continuing for an additional 2 weeks, zebrafish demonstrated abnormal spiraling and circling swimming behaviors. Histopathology demonstrated necrotizing encephalitis. In immersion trials, zebrafish were exposed to low, medium, and high doses (averaging 1.16 x 10(5), 1.16 x 10(6), and 1.16 x 10(7) CFU/mL of tank water) of E. ictaluri for 2 h. Mortality occurred from 5 to 9 d postexposure at rates of 0, 3.3, and 13.3% for the low, medium, and high doses, respectively; E. ictaluri was isolated from dead fish. Channel catfish Ictalurus punctatus exposed to the medium doses suffered 100% mortality, and E. ictaluri was isolated from these fish. This study demonstrates the potential use of zebrafish as a model for E. ictaluri pathogenesis.
BackgroundRecombination activation gene 1 deficient (rag1−/−) mutant zebrafish have a reduced lymphocyte-like cell population that lacks functional B and T lymphocytes of the acquired immune system, but includes Natural Killer (NK)-like cells and Non-specific cytotoxic cells (NCC) of the innate immune system. The innate immune system is thought to lack the adaptive characteristics of an acquired immune system that provide enhanced protection to a second exposure of the same pathogen. It has been shown that NK cells have the ability to mediate adaptive immunity to chemical haptens and cytomegalovirus in murine models. In this study we evaluated the ability of rag1−/− mutant zebrafish to mount a protective response to the facultative intracellular fish bacterium Edwardsiella ictaluri.Methodology/Principal FindingsFollowing secondary challenge with a lethal dose of homologous bacteria 4 and 8 weeks after a primary vaccination, rag1−/− mutant zebrafish demonstrated protective immunity. Heterologous bacterial exposures did not provide protection. Adoptive leukocyte transfers from previously exposed mutants conferred protective immunity to naïve mutants when exposed to homologous bacteria.Conclusions/SignificanceOur findings show that a component of the innate immune system mounted a response that provided significantly increased survival when rag1−/− mutant zebrafish were re-exposed to the same bacteria. Further, adoptive cell transfers demonstrated that kidney interstitial leukocytes from previously exposed rag1−/− mutant zebrafish transferred this protective immunity. This is the first report of any rag1−/− mutant vertebrate mounting a protective secondary immune response to a bacterial pathogen, and demonstrates that a type of zebrafish innate immune cell can mediate adaptive immunity in the absence of T and B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.