Purified F1Fo ATPase of Propionigenium modestum was rapidly inactivated by dicyclohexylcarbodiimide (DCCD) with k2 = 1.2 x 10(5) M-1 min-1 at pH 5.6 and 0 degree C. Na+ ions provided specific protection from the modification by DCCD while protons stimulated the reaction. Plots of pseudo-first-order rate constants of inactivation (kobs) against pH yielded titration curves with pK(H+) = 7.0 in the absence of Na+ and pK(H+) = 6.2 in the presence of 0.5 mM Na+. From the dependencies of kobs on Na+, pK(Na+) of about 2.5 and 3.3 were obtained at pH 6.5 and 8.0, respectively. These results indicate that DCCD reacts with a protonated group of the enzyme that dissociates with pK(H+) = 7.0 in the absence of Na+, and that Na+ ions promote the dissociation of this group. Additionally, higher Na+ concentrations were required at more acidic pH values to yield half-maximal protection from inactivation. These effects fit a competitive binding model for Na+ or H+ at the DCCD-reactive conserved acidic amino acid of subunit c (Glu-65). The active-site carboxylate could either be protonated and modified by DCCD or bind Na+ which then provides protection. Complementary results were obtained from the effects of Na+ and H+ on ATPase activity. The pH-rate profile of numax (with saturating Na+) indicated an increase of activity with apparent pK = 6.8, an optimum around pH 7.5, and decreasing activity with apparent pK = 8.7.(ABSTRACT TRUNCATED AT 250 WORDS)
The purified ATPase of Propionigenium modestum (F1Fo) was incorporated into liposomes, and the F1 part was dissociated. The Fo-liposomes catalyzed proton uptake in response to a potassium diffusion potential (inside negative). Proton translocation was abolished by rebinding F1 to the Fo-liposomes or after incubation with the c-subunit-specific inhibitor dicyclohexylcarbodiimide (DCCD). Proton uptake was also sensitive to the presence of external Na+ or Li+ ions and was completely abolished at 2 mM NaCl or 150 mM LiCl, respectively. However, the same concentrations of these salts in the internal volume of the Fo-liposomes were without effect, suggesting that the cation binding site is not accessible from both sides of the membrane simultaneously. An open channel-type of transport through Fo from P. modestum is therefore excluded. The Fo-liposomes also catalyzed Na+ influx or efflux in response to a K+ diffusion potential that was negative on the inside or outside, respectively. These Na+ fluxes could not be created, however, by delta pNa+ of about 60-180 mV. The initial rate of Na+ uptake depended strongly on the size of the membrane potential with no significant conductivity below -40 mV, followed by a proportional increase up to about -115 mV. In the absence of a membrane potential, the Fo-liposomes catalyzed 22Na+ counterflow against a 28-fold concentration gradient. Uptake of 22Na+ into Fo-liposomes against delta pNa+ (counterflow) was completely prevented by imposing an inside-positive potassium diffusion potential of 90 mV. The catalysis of 22Na+ counterflow by Fo from P. modestum is a clear indication of a carrier (transporter)-type mechanism and excludes a channel mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.