Background: Host-parasite interactions are among the most important biotic relationships. Host species should evolve mechanisms to detect their enemies and employ appropriate counterstrategies. Parasites, in turn, should evolve mechanisms to evade detection and thus maximize their success. Females of the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae) hunt exclusively honeybee workers as food for their progeny. The brood cells containing the paralyzed bees are severely threatened by a highly specialized cuckoo wasp (Hedychrum rutilans, Hymenoptera, Chrysididae). Female cuckoo wasps enter beewolf nests to oviposit on paralyzed bees that are temporarily couched in the nest burrow. The cuckoo wasp larva kills the beewolf larva and feeds on it and the bees. Here, we investigated whether H. rutilans evades detection by its host. Since chemical senses are most important in the dark nest, we hypothesized that the cuckoo wasp might employ chemical camouflage.
Parasites and parasitoids exert an important selection pressure on organisms and, thus, play an important role for both population dynamics and evolutionary responses of host species. We investigated host-parasite interactions in a brood-caring wasp, the European beewolf, Philanthus triangulum (Hymenoptera, Sphecidae), and asked whether females of this species might employ temporal or spatial strategies to reduce the rate of attack by a specialised brood parasitoid, the cuckoo wasp Hedychrum rutilans (Hymenoptera, Chrysididae). Females of the host species might shift their activity to periods of low parasitoid activity both in the course of the season and in the course of the day. On a spatial scale, aggregated or dispersed nesting might be favoured depending on the form of the density dependence of parasitism. The beginning and end of the flight season of host and parasitoid were nearly identical. Activity of chrysidids relative to beewolves did not change significantly during the flight season. However, relative parasitoid activity declined in the course of the day, suggesting the existence of temporal enemy-free space in the evening hours. Shifting the main activity to the evening hours might be a flexible response of beewolves to the presence of chrysidids. Activity of cuckoo wasps per nest was independent of nest density but the actual rate of parasitism as revealed by nest excavations indicated direct density dependence. Total mortality, however, was inversely density dependent. Thus, in the study population aggregated nesting did not reduce parasitism but minimised total mortality.
Age at maturity, a particularly important parameter in the life history of small mammals, contributes greatly to fitness. Social influences on age at maturity have been demonstrated for altricial rodents, in particular, mice. Nothing is known about such effects in precocial small mammals. Wild cavies Cavia aperea are born in a highly precocial state and mature early in life, briefly after weaning. We investigated whether the wild cavy C. aperea and the domestic guinea-pig Cavia aperea f. porcellus reach maturity earlier in the presence of adults of the opposite sex. Juvenile females kept in pairs without males showed first vaginal opening (= oestrus) when 59 days old in cavies and at about 40 days in the guinea-pig. However, in the company of adult males, cavy females kept in pairs reached maturity when about 30 days old, and guinea-pig females when 26 days old. Most cavy females experienced successful pregnancy following first vaginal opening. In cavies, female mass at birth and at first oestrus was not correlated with age at first oestrus. In guinea-pigs, birth mass predicted age at maturity only when a male was present. The growth rate from birth to first oestrus related to age at first oestrus. In the wild cavy, the presence of a male appeared to influence maturation more between days 25 and 30 than earlier in life. Male C. aperea matured and had fully descended testes when about 65-70 days old. All male cavies produced abundant motile sperm from day 75. First successful copulations occurred at about the same age. Surprisingly, the priming effect of the presence of an adult male on female maturation proved stronger in these highly precocial caviomorphs than in altricial rodents investigated so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.