Adipic acid is a high-value compound used primarily as a precursor for the synthesis of nylon, coatings, and plastics. Today it is produced mainly in chemical processes from petrochemicals like benzene. Because of the strong environmental impact of the production processes and the dependence on fossil resources, biotechnological production processes would provide an interesting alternative. Here we describe the first engineered Saccharomyces cerevisiae strain expressing a heterologous biosynthetic pathway converting the intermediate 3-dehydroshikimate of the aromatic amino acid biosynthesis pathway via protocatechuic acid and catechol into cis,cis-muconic acid, which can be chemically dehydrogenated to adipic acid. The pathway consists of three heterologous microbial enzymes, 3-dehydroshikimate dehydratase, protocatechuic acid decarboxylase composed of three different subunits, and catechol 1,2-dioxygenase. For each heterologous reaction step, we analyzed several potential candidates for their expression and activity in yeast to compose a functional cis,cis-muconic acid synthesis pathway. Carbon flow into the heterologous pathway was optimized by increasing the flux through selected steps of the common aromatic amino acid biosynthesis pathway and by blocking the conversion of 3-dehydroshikimate into shikimate. The recombinant yeast cells finally produced about 1.56 mg/liter cis,cis-muconic acid.
The fruit fly Tephritis bardanae infests flower heads of two burdock hosts, Arctium tomentosum and A. minus. Observations suggest host‐associated mating and behavioural differences at oviposition indicating host‐race status. Previously, flies from each host plant were found to differ slightly in allozyme allele frequencies, but these differences could as well be explained by geographical separation of host plants. In the present study, we explicitly test whether genetic and morphological variance among T. bardanae are explained best by host‐plant association or by geographical location, and if this pattern is stable over a 10‐year period. Populations of A. tomentosum flies differed significantly from those of A. minus flies in (i) allozyme allele frequencies at the loci Pep‐A and Pgd, (ii) mtDNA haplotype frequencies and (iii) wing size. In contrast, geographical location had no significant influence on the variance estimates. While it remains uncertain whether morphometric differentiation reflects genotypic variability or phenotypic plasticity, allozyme and mtDNA differentiation is genetically determined. This provides strong evidence for host‐race formation in T. bardanae. However, the levels of differentiation are relatively low indicating that the system is in an early stage of divergence. This might be due to a lack of time (i.e. the host shift occurred recently) or due to relatively high gene flow preventing much differentiation at loci not experiencing selection.
The neural mechanisms that unfold when humans form a large group defined by an overarching context, such as audiences in theater or sports, are largely unknown and unexplored. This is mainly due to the lack of availability of a scalable system that can record the brain activity from a significantly large portion of such an audience simultaneously. Although the technology for such a system has been readily available for a long time, the high cost as well as the large overhead in human resources and logistic planning have prohibited the development of such a system. However, during the recent years reduction in technology costs and size have led to the emergence of low-cost, consumer-oriented EEG systems, developed primarily for recreational use. Here by combining such a low-cost EEG system with other off-the-shelve hardware and tailor-made software, we develop in the lab and test in a cinema such a scalable EEG hyper-scanning system. The system has a robust and stable performance and achieves accurate unambiguous alignment of the recorded data of the different EEG headsets. These characteristics combined with small preparation time and low-cost make it an ideal candidate for recording large portions of audiences.
Research on psychopathy has so far been largely limited to the investigation of high-level processes, such as emotion perception and regulation. In the present work, we investigate whether psychopathy has an effect on the estimation of fundamental physical parameters, which are computed in the brain during early stages of sensory processing. We employed a simple task in which participants had to estimate their interpersonal distance from a moving avatar and stop it at a given distance. The face expression of the avatars were positive, negative, or neutral. Participants carried out the task online on their home computers. We measured the psychopathy level via a self-report questionnaire. Regardless of the degree of psychopathy, the facial expression of the avatars showed no effect on distance estimation. Our results show that individuals with a high degree of psychopathy underestimate distance of approaching avatars significantly less (let the avatar approach them significantly closer) than did participants with a lesser degree of psychopathy. Moreover, participants who scored high in Self Centered Impulsivity underestimate the distance to approaching avatars significantly less (let the avatar approach closer) than participants with a low score. Distance estimation is considered an automatic process performed at early stages of visual processing. Therefore, our results imply that psychopathy affects basic early sensory processes, such as feature extraction, in the visual cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.