AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKα2 catalytic subunit gene was inactivated. AMPKα2–/– mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKα2–/– pancreatic islets, glucose- and L-arginine–stimulated insulin secretion were not affected. AMPKα2–/– mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKα2–/– muscles. These data indicate that AMPKα2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKα2–/– mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKα2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity
Mutations in the HNF4␣ gene are responsible for type 1 maturity-onset diabetes of the young (MODY1), which is characterized by a defect in insulin secretion. Hepatocyte nuclear factor (HNF)-4␣ is a transcription factor that plays a critical role in the transcriptional regulation of genes involved in glucose metabolism in both hepatocytes and pancreatic -cells.
Conditional gene targeting uses the insertion of expression cassettes for the selection of targeted embryonic stem cells. The presence of these cassettes in the final targeted chromosomal locus may affect the normal expression of the targeted gene and produce interesting knock down phenotypes. We show here that the selection cassette may then be selectively removed in vivo, using three appropriately positioned loxP sites in the targeted gene and the transgenic mouse EIIaCre. This strategy was applied to two different target genes and we demonstrated that it is reliable and reproducible. First, we generated double transgenic EIIaCre/loxP mice (F1) that showed variable degrees of mosaicism for partially CRE-recombined floxed alleles. Efficiency of EIIaCre at creating mosaicism was dependent on the target gene and on parental transmission of the transgene. The segregation of partially recombined alleles and EIIaCre transgene was obtained in the next generation using mosaic F1 males. Mosaic females were unsuitable for this purpose because they systematically generated complete excisions during oogenesis. Our strategy is applicable to other approaches based on three loxP sites. As this procedure allows generation of knock down (presence of neo), knockout (total exision of the loxP-flanked sequences) and floxed substrains (excision of the selection cassette) from a single, targeted germline mutation and in a single experiment, its use may become more widespread in conditional mutagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.