Background Ruminants burp massive amounts of methane into the atmosphere and significantly contribute to the deposition of greenhouse gases and the consequent global warming. It is therefore urgent to devise strategies to mitigate ruminant’s methane emissions to alleviate climate change. Ruminal methanogenesis is accomplished by a series of methanogen archaea in the phylum Euryarchaeota, which piggyback into carbohydrate fermentation by utilizing residual hydrogen to produce methane. Abundance of methanogens, therefore, is expected to affect methane production. Furthermore, availability of hydrogen produced by cellulolytic bacteria acting upstream of methanogens is a rate-limiting factor for methane production. The aim of our study was to identify microbes associated with the production of methane which would constitute the basis for the design of mitigation strategies. Results Moderate differences in the abundance of methanogens were observed between groups. In addition, we present three lines of evidence suggesting an apparent higher abundance of a consortium of Prevotella species in animals with lower methane emissions. First, taxonomic classification revealed increased abundance of at least 29 species of Prevotella. Second, metagenome assembly identified increased abundance of Prevotella ruminicola and another species of Prevotella. Third, metabolic profiling of predicted proteins uncovered 25 enzymes with homology to Prevotella proteins more abundant in the low methane emissions group. Conclusions We propose that higher abundance of ruminal Prevotella increases the production of propionic acid and, in doing so, reduces the amount of hydrogen available for methanogenesis. However, further experimentation is required to ascertain the role of Prevotella on methane production and its potential to act as a methane production mitigator.
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.