Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.
The spreading and accumulation of α-synuclein and dopaminergic neurodegeneration, two hallmarks of Parkinson's disease (PD), have been faithfully reproduced in rodent brains by chronic, oral administration of β-sitosterol β-Dglucoside (BSSG). We investigated whether a single injection of BSSG (6 μg BSSG/μL DMSO) in the left substantia nigra of Wistar rats causes the same effects. Mock DMSO injections and untreated rats formed control groups. We performed immunostainings against the pathological α-synuclein, the dopaminergic marker tyrosine hydroxylase (TH), the neuroskeleton marker β-III tubulin, the neurotensin receptor type 1 (NTSR1) as non-dopaminergic phenotype marker and Fluro-Jade C (F-J C) label for neurodegeneration. Using β-galactosidase (β-Gal) assay and active caspase-3 immunostaining, we assessed cell death mechanisms. Golgi-Cox staining was used to measure the density and types of dendritic spines of striatal medium spiny neurons. Motor and non-motor alterations were also evaluated. The study period comprised 15 to 120 days after the lesion. In the injured substantia nigra, BSSG caused a progressive α-synuclein aggregation and dopaminergic neurodegeneration caused by senescence and apoptosis. The α-synuclein immunoreactivity was also present within microglia cells. Decreased density of dopaminergic fibers
Chronic consumption of β-sitosterol-β-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson’s disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 μg BSSG/1 μL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100β, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1β, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1β was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia ( 899.0 ± 80.20 % ) and reactive astrocytes ( 651.50 ± 11.28 % ) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8 % (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100β immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8 % reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson’s disease in BSSG intoxication.
Alzheimer's disease (AD) is a degenerative and irreversible disorder whose progressiveness is dependent on age. It is histopathologically characterized by the massive accumulation of insoluble forms of tau and amyloid-β (Aβ) asneurofibrillary tangles and neuritic plaques, respectively. Many studies have documented that these two polypeptides suffer several posttranslational modifications employing postmortem tissue sections from brains of patients with AD. In order to elucidate the molecular mechanisms underlying the posttranslational modifications of key players in this disease, including Aβ and tau, several transgenic mouse models have been developed. One of these models is the 3×Tg-AD transgenic mouse, carrying three transgenes encoding APPSWE, S1M146V, and TauP301L proteins. To further characterize this transgenicmouse, we determined the accumulation of fibrillar Aβ as a function of age in relation to the hyperphosphorylation patterns of TauP301L at both its N- and C-terminus in the hippocampal formation by immunofluorescence and confocal microscopy. Moreover, we searched for the expression of activated protein kinases and mediators of inflammation by western blot of wholeprotein extracts from hippocampal tissue sections since 3 to 28 months as well. Our results indicate that the presence of fibrillar Aβ deposits correlates with a significant activation of astrocytes and microglia in subiculum and CA1 regions of hippocampus. Accordingly, we also observed a significant increase in the expression of TNF-α associated to neuritic plaques and glial cells. Importantly, there is an overexpression of the stress activated protein kinases SAPK/JNK and Cdk-5 in pyramidal neurons, which might phosphorylate several residues at the C-terminus of TauP301L. Therefore, the accumulation of Aβ oligomers results in an inflammatory environment that upregulates kinases involved in hyperphosphorylation of TauP301L polypeptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.