Kidney transplantation, like other transplants, has the risk of producing graft rejection due to genetic differences between donor and recipient. The three known types of renal rejection are listed in the Banff classification: T-cell-mediated rejection (TCMR), antibody-mediated rejection (ABMR), and mixed rejection. The human leukocyte antigens (HLA) are highly polymorphic and may be the targets of donor-specific antibodies, resulting in ABMR. Therefore, prior to transplantation, it is necessary to analyze the HLA genotype of the donor and recipient, as well as the presence of DSA, in order to avoid hyperacute rejection. However, due to the shortage of kidneys, it is very difficult to find a donor and a recipient with completely matched HLA genotypes. This can trigger a future rejection of the kidney, as is reported in this work. We describe a patient who received a kidney transplant after a negative DSA test, who developed graft rejection with antibodies against the donor’s HLA-Bw4 public epitope and lymphocytic infiltrate four days after transplantation, whose differential diagnosis was mixed rejection.
Background: Antibody-mediated rejection (AMR) is one of the most important challenges in the context of renal transplantation, because the binding of de novo donor-specific antibodies (dnDSA) to the kidney graft triggers the activation of the complement, which in turn leads to loss of transplant. In this context, the objective of this study was to evaluate the association between complement-fixing dnDSA antibodies and graft loss as well as the possible association between non-complement-fixing antibodies and transplanted organ survival in kidney transplant recipients. Methods: Our study included a cohort of 245 transplant patients over a 5-year period at Virgen de las Nieves University Hospital (HUVN) in Granada, Spain. Results: dnDSA was observed in 26 patients. Of these patients, 17 had non-complement-fixing dnDSA and 9 had complement-fixing dnDSA. Conclusions: Our study demonstrated a significant association between the frequency of rejection and renal graft loss and the presence of C1q-binding dnDSA. Our results show the importance of the individualization of dnDSA, classifying them according to their ability to activate the complement, and suggest that the detection of complement-binding capacity by dnDSA could be used as a prognostic marker to predict AMR outcome and graft survival in kidney transplant patients who develop dnDSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.