The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2 × 3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature × diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair-fed chickens, meat color was similar to the heat stressed group. Shear force was not influenced by heat stress, but pair-fed chickens showed the tenderest meat. In conclusion, reduction in growth performance and negative changes in meat color in heat stressed chickens were attributed to depression in feed intake, whereas negative changes in body composition, higher meat pH and cooking loss were credited to high ambient temperature per se. Diet supplementation with vitamins C and E as antioxidants did not mitigate any of these negative effects.
Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 3 3 factorial arrangement (two genetic groups and three ambient temperatures: 188C, 258C and 308C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.48C and 63.9%, 24.48C and 80.2% and 29.68C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 308C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group 3 ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and yellowness diminished as ambient temperature increased, whereas cooking loss was linearly elevated with ambient temperature. Meat color traits revealed paler meat in the purebreds, but no differences in instrumental texture properties and water-holding capacity between genetic groups. Purebred rabbits were less susceptible to heat stress than the crossbreds. Heat stress resulted in lower slaughter and carcass weights and proportional reductions of organ weights, which contributed to a higher carcass yield. Moreover, it exerted a small, but negative, effect on meat quality traits.
It is known that PSE meat present important functional defects, such as low water holding capacity and ultimate pH, which may compromise the quality of further-processed meat products. In this study, L* (lightness), a* (redness), and b* (yellowness) values of 500 chicken breast fillets were determined using a portable colorimeter (Minolta, model CR-400) in a commercial processing plant. Fillets were considered pale when their L* was ≥49. Out of those samples, 30 fillets with normal color and 30 pale fillets were evaluated as to pH, drip loss, cooking loss, water holding capacity, shear force, and submitted to sensorial analysis. An incidence of 10.20% PSE meat was determined. Pale and normal fillets presented significantly different (p≤0.05) pH values, L* and a* values, water holding capacity, drip loss, and cooking loss, demonstrating changes in the physical properties of PSE meat. Shear force and sensorial characteristics were not different (p>0.05) between pale and normal fillets. Despite the significant differences in meat physical properties, these were not perceived by consumers in terms of tenderness, aspect, and flavor. The observed incidence of PSE may cause losses due to its low water retention capacity. INTRODUCTIONPoultry meat production has undergone many changes in the last few years. Parts are increasingly sold relative to whole carcasses. Moreover, there is an increasing number of further-processed products, such as nuggets, breaded and other ready-to-cook and ready-to-eat products, available in the market. However, the quality of these products is directly related to the quality of the meat used to prepare them.According to the Brazilian Poultry Association (União Brasileira de Avicultura -UBA, 2008), Brazilian chicken production exceeded the volumes sold in previous years both in the domestic and international markets. Exporters expect to obtain significant increase in sales, particularly as new markets are opened. One of the factors that allowed Brazil to become the largest global chicken meat exporter in terms of revenue was the increase in the sales of chicken parts and further-processed products, which have higher added value.A significant proportion of chickens is deboned for breast exports, and consequently, meat quality defects, such as PSE (pale, dry, and exudative meat), result in important losses for chicken meat industry. In addition, taking into account the increasing number of further-processed chicken meat products in the last few years, it is essential for processors to have correct information on PSE meat (Komiyama, 2006). PSE meat is a meat quality defect that affects important meat physical properties, such as water holding capacity and ultimate pH, which may reduce the quality of further processed chicken meat products (Komiyama, 2006
RESUMOAvaliaram-se o desempenho e a qualidade da carne de frangos de corte alimentados com diferentes níveis de sorgo, do cultivar SAARA, com 0,49g/kg de tanino, em substituição ao milho. Os 2600 pintos sexados de um dia de idade, da linhagem Ross 308, foram distribuídos em delineamento inteiramente ao acaso, com esquema fatorial 5×2 (cinco níveis de sorgo -0, 25, 50, 75 e 100% e dois sexos), e quatro repetições de 65 aves por unidade experimental. Não houve efeito (P>0,05) da substituição do milho pelo sorgo sobre as características de desempenho, de rendimentos de carcaça, carne de peito e pernas, de composição química e sensoriais. O pH observado nas carnes de peito e pernas foi maior para os machos (P<0,05), e houve diminuição do pH à medida que se aumentaram os níveis de substituição. Os machos apresentaram os maiores valores nas medidas de comprimento, largura e espessura do filé. Na carne do peito dos machos, ocorreu maior perda de peso por cozimento e força de cisalhamento (P<0,05). Observou-se diminuição (P<0,05) dos valores de a (vermelho) e b (amarelo) e aumento de L (luminosidade) à medida que aumentaram os níveis de substituição.Palavras-chave: frango de corte, qualidade da carne, sorgo, tanino ABSTRACTThe effects of diets with graded levels of SAARA sorghum, a variety containing 0.49g/kg of tannin, on broiler performance and meat quality were evaluated. One-day-old, sexed Ross 308 chicks (n=2600) were randomly assigned within sex to one of five levels of sorghum (replacement of 0, 25, 50, 75 and 100% of
This study aimed to evaluate the effects of probiotics and prebiotics of bacterial and yeast origin on the performance, development of the digestive system, carcass yield and meat quality of free-range broiler chickens. Five hundred and sixty male chicks of the strain ISA S757-N were reared from one to 84 days old. The birds were distributed in four treatments according to a completely randomized block design: T1 = Control, T2 = Probiotics and Prebiotics of bacterial origin, T3 = Probiotics and prebiotics of yeast origin, T4 = Probiotics and prebiotics of bacterial origin + probiotics and prebiotics of yeast origin. There were four repetitions with 35 birds per repetition, and the birds had access to a pasture area after 35 days of age. Characteristics evaluated were performance, development of the digestive system, carcass and parts yield, abdominal fat, breast meat physical measurements (length, width and height) and meat quality parameters (pH from breast and leg meat, cooking loss and shearing force from breast meat). Lower mortality (p<0.05) and higher weight gain from 64 to 77 and 64 to 84 days of age were seen in birds supplemented with probiotics and prebiotics of bacterial origin compared to the non-supplemented birds (control). There were significant differences (p<0.05) among treatments for carcass yield. Birds supplemented with both probiotics and prebiotics of microbial and yeast origin (T4) showed higher carcass yield than control birds. Supplementation with probiotics and prebiotics of bacterial origin (T2) or the supplementation of these together with those of yeast origin (T4) reduced mortality and increased the carcass yield in free-range broiler chickens
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.