There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development.
Background: Toxoplasma gondii is the third most important contributor to health burden caused by food-borne illness. Ingestion of tissue cysts from undercooked meat is an important source of horizontal transmission to humans. However, there is an increasing awareness of the consumption of fresh fruit and vegetables, as a possible source for oocyst transmission, since this stage of the parasite can persist and remain infective in soil and water for long time. Herein, we outline findings related with detection of T. gondii oocysts in vegetables and berry fruits, which are usually raw consumed. The procedure includes the estimation of the number of oocysts. Methods: Food samples were collected from local producers and supermarket suppliers. Toxoplasma gondii oocysts were concentrated after washing the samples by applying high resolution water filtration and immunomagnetic separation (method 1623.1: EPA 816-R-12-001-Jan 2012), in order to (i) remove potential Cryptosporidium spp. oocysts and Giardia spp. cysts present in the samples; and (ii) select T. gondii oocysts. Toxoplasma gondii oocyst detection and an estimation of their numbers was performed by conventional PCR and real time qPCR, using specific primers for a 183-bp sequence of the T. gondii repetitive DNA region. All PCR-positive DNA samples were purified and sequenced. Restriction enzyme digestion with EcoRV endonuclease confirmed the presence of the T. gondii DNA fragment. In addition, the presence of the parasite was observed by fluorescent microscopy, taking advantage of the oocysts autofluorescence under UV light. Results: Forty percent of the analysed samples (95% CI: 25.5-56.5%) presented the expected PCR and digested DNA fragments. These fragments were confirmed by sequencing. Microscopic autofluorescence supported the presence of T. gondii-like oocysts. The estimated mean (± SE) oocyst concentration was 23.5 ± 12.1 oocysts/g, with a range of 0.6-179.9 oocysts/g. Conclusions: Our findings provide relevant evidence of contamination of fresh vegetables and berry fruits with T. gondii oocysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.