Graphical Abstract Highlights d HIF1a reduces intracellular aspartate levels d HIF1a impairs oxidative and reductive aspartate biosynthesis d The aspartate-generating GOT1 and GOT2 enzymes are repressed by HIF1a d Aspartate supplementation counteracts the antiproliferative influence of HIF1a In Brief Melé ndez-Rodríguez et al. show that HIF1a impairs oxidative and reductive aspartate biogenesis, which consequently drives HIF1a-dependent suppression of tumor cell proliferation. Mechanistically, HIF1a represses the aspartate-producing enzymes GOT1 and GOT2 in several biological settings, including human VHL-deficient renal cell carcinoma, in which HIF1a can act as a tumor suppressor.
Aim
NG2 cells in the brain are comprised of pericytes and NG2 glia and play an important role in the execution of cerebral hypoxia responses, including the induction of erythropoietin (EPO) in pericytes. Oxygen‐dependent angiogenic responses are regulated by hypoxia‐inducible factor (HIF), the activity of which is controlled by prolyl 4‐hydroxylase domain (PHD) dioxygenases and the von Hippel‐Lindau (VHL) tumour suppressor. However, the role of NG2 cells in HIF‐regulated cerebral vascular homeostasis is incompletely understood.
Methods
To examine the HIF/PHD/VHL axis in neurovascular homeostasis, we used a Cre‐loxP‐based genetic approach in mice and targeted Vhl, Epo, Phd1, Phd2, Phd3 and Hif2a in NG2 cells. Cerebral vasculature was assessed by immunofluorescence, RNA in situ hybridization, gene and protein expression analysis, gel zymography and in situ zymography.
Results
Vhl inactivation led to a significant increase in angiogenic gene and Epo expression. This was associated with EPO‐independent expansion of capillary networks in cortex, striatum and hypothalamus, as well as pericyte proliferation. A comparable phenotype resulted from the combined inactivation of Phd2 and Phd3, but not from Phd2 inactivation alone. Concomitant PHD1 function loss led to further expansion of the neurovasculature. Genetic inactivation of Hif2a in Phd1/Phd2/Phd3 triple mutant mice resulted in normal cerebral vasculature.
Conclusion
Our studies establish (a) that HIF2 activation in NG2 cells promotes neurovascular expansion and remodelling independently of EPO, (b) that HIF2 activity in NG2 cells is co‐controlled by PHD2 and PHD3 and (c) that PHD1 modulates HIF2 transcriptional responses when PHD2 and PHD3 are inactive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.