Quinolone-3-carboxamides 11 bearing at position 5, 6, 7, or 8 diverse substituents such as halides, alkyl, aryl, alkoxy, and aryloxy groups differing in their steric/electronic properties, were prepared. The new compounds were tested in vitro for CB1 and CB2 receptor affinity in comparison with the reference compounds rimonabant and SR144528. The tested compounds exhibited CB2 affinity in the range from 55.9 to 0.8 nM and CB1 affinity in the range from >10,000 to 5.3 nM, with selectivity indeces [Ki(CB1)/Ki(CB2)] varying from >2666.6 to 1.23. On the basis of the structure-selectivity relationship developed, the presence of a substituent at C6/C8 or C7 well accounts for the high or low CB2 selectivity, respectively. Compound 11c, characterized by high CB2 affinity and selectivity, showed analgesic activity in the formalin test of acute peripheral and inflammatory pain in mice as a result of selective CB2 agonistic activity.
A set of 4-quinolone-3-carboxylic acids bearing different substituents on the condensed benzene ring was designed and synthesized as potential HIV-1 integrase inhibitors structurally related to elvitegravir. Some of the new compounds proved to be able to inhibit the strand transfer step of the virus integration process in the micromolar range. Docking studies and quantum mechanics calculations were used to rationalize these data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.