BackgroundAberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour.MethodsWe fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish.ResultsIn the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature.ConclusionOur results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen.
Drugs are thought to be a rare cause for acute pancreatitis; however 525 different drugs are listed in the World Health Organization (WHO) database suspected to cause acute pancreatitis as a side effect. Many of them are widely used to treat highly prevalent diseases. The true incidence is not entirely clear since only few systematic population based studies exist. The majority of the available data are derived from case reports or case control studies. Furthermore, the causality for many of these drugs remains elusive and for only 31 of these 525 dugs a definite causality was established. Definite proof for causality is defined by the WHO classification if symptoms reoccur upon rechallenge.In the actual algorithm the diagnosis is confirmed if no other cause of acute pancreatitis can be detected, and the patient is taking one of the suspected drugs.
BackgroundCachexia, a >10% loss of body-weight, is one factor determining the poor prognosis of pancreatic cancer. Deficiency of L-Carnitine has been proposed to cause cancer cachexia.FindingsWe screened 152 and enrolled 72 patients suffering from advanced pancreatic cancer in a prospective, multi-centre, placebo-controlled, randomized and double-blinded trial to receive oral L-Carnitine (4 g) or placebo for 12 weeks. At entry patients reported a mean weight loss of 12 ± 2,5 (SEM) kg. During treatment body-mass-index increased by 3,4 ± 1,4% under L-Carnitine and decreased (−1,5 ± 1,4%) in controls (p < 0,05). Moreover, nutritional status (body cell mass, body fat) and quality-of-life parameters improved under L-Carnitine. There was a trend towards an increased overall survival in the L-Carnitine group (median 519 ± 50 d versus 399 ± 43 d, not significant) and towards a reduced hospital-stay (36 ± 4d versus 41 ± 9d,n.s.).ConclusionWhile these data are preliminary and need confirmation they indicate that patients with pancreatic cancer may have a clinically relevant benefit from the inexpensive and well tolerated oral supplementation of L-Carnitine.
BACKGROUND & AIMS The kinase Akt mediates resistance of pancreatic cancer (PaCa) cells to death and is constitutively active (phosphorylated) in cancer cells. Whereas the kinases that activate Akt are well characterized, less is known about phosphatases that dephosporylate and thereby inactivate it. We investigated regulation of Akt activity and cell death by the phosphatases PHLPP1 and PHLPP2 in PaCa cells, mouse models of PaCa, and human pancreatic ductal adenocarcinoma (PDAC). METHODS We measured the effects of PHLPP overexpression or knockdown with small interfering RNAs on Akt activation and cell death. We examined regulation of PHLPPs by growth factors and reactive oxygen species, as well as associations between PHLPPs and tumorigenesis. RESULTS PHLPP overexpression inactivated Akt, whereas PHLPP knockdown increased phosphorylation of Akt in PaCa cells. Levels of PHLPPs were greatly reduced in human PDAC and in mouse genetic and xenograft models of PaCa. PHLPP activities in PaCa cells were down-regulated by growth factors and Nox4 reduced nicotinamide adenine dinucleotide phosphate oxidase. PHLPP1 selectively dephosphorylated Akt2, whereas PHLPP2 selectively dephosphorylated Akt1. Akt2, but not Akt1, was up-regulated in PDAC, and Akt2 levels correlated with mortality. Consistent with these results, high levels of PHLPP1, which dephosphorylates Akt2 (but not PHLPP2, which dephosphorylates Akt1), correlated with longer survival times of patients with PDAC. In mice, xenograft tumors derived from PaCa cells that overexpress PHLPP1 (but not PHLPP2) had inactivated Akt, greater extent of apoptosis, and smaller size. CONCLUSIONS PHLPP1 has tumor suppressive activity and might represent a therapeutic or diagnostic tool for PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.