This paper describes GREFIT (Gesture REcognition based on FInger Tips), a neural network-based system which recognizes continuous hand postures from gray-level video images (posture capturing). Our approach yields a full identification of all finger joint angles (making, however, some assumptions about joint couplings to simplify computations). This allows a full reconstruction of the three-dimensional (3-D) hand shape, using an articulated hand model with 16 segments and 20 joint angles. GREFIT uses a two-stage approach to solve this task. In the first stage, a hierarchical system of artificial neural networks (ANNs) combined with a priori knowledge locates the two-dimensional (2-D) positions of the finger tips in the image. In the second stage, the 2-D position information is transformed by an ANN into an estimate of the 3-D configuration of an articulated hand model, which is also used for visualization. This model is designed according to the dimensions and movement possibilities of a natural human hand. The virtual hand imitates the user's hand to an remarkable accuracy and can follow postures from gray scale images at a frame rate of 10 Hz.
SYNOPSISWe argue that direct experimental approaches to elucidate the architecture of higher brains may benefit from insights gained from exploring the possibilities and limits of artificial control architectures for robot systems. We present some of our recent work that has been motivated by that view and that is centered around the study of various aspects of hand actions since these are intimately linked with many higher cognitive abilities. As examples, we report on the development of a modular system for the recognition of continuous hand postures based on neural nets, the use of vision and tactile sensing for guiding prehensile movements of a multifingered hand, and the recognition and use of hand gestures for robot teaching.Regarding the issue of learning, we propose to view real-world learning from the perspective of data-mining and to focus more strongly on the imitation of observed actions instead of purely reinforcement-based exploration. As a concrete example of such an effort we report on the status of an ongoing project in our laboratory in which a robot equipped with an attention system with a neurally inspired architecture is taught actions by using hand gestures in conjunction with speech commands. We point out some of the lessons learnt from this system, and discuss how systems of this kind can contribute to the study of issues at the junction between natural and artificial cognitive systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.