We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3'-N-P-P3-M-G-P6-L-5'. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3' leader and 5' trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Alfalfa (Medicago sativa L.) is a major forage crop in Argentina with an estimated cultivated area of 4 million ha in the 2009–2010 season, which constitutes a primary component for the animal production chain. In early summer of 2010, alfalfa plants showing virus-like symptoms were identified in 20 commercial fields in La Pampa Province with 95% disease prevalence. Diseased plants had shortened internodes, a bushy appearance, deformations, puckering, epinasty of leaflet blades, vein enations, and varying sized papillae on the adaxial leaflet surfaces. Similar symptoms were observed in alfalfa crops in Buenos Aires, Cordoba, Santa Fe, and Santiago del Estero provinces. Electron microscopy (EM) and molecular assays were performed on leaf tissue from one asymptomatic and two symptomatic plants. EM of ultrathin sections revealed membrane-bound bullet-shaped particles associated with the endoplasmic reticulum of phloem cells from symptomatic plants only. Total RNA was extracted from symptomatic and asymptomatic plants with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) for a template in one-step reverse transcription (RT)-PCR assays with the Access RT-PCR Kit (Promega, Madison, WI). RT-PCR assays employed degenerate primers targeting conserved regions of plant rhabdovirus polymerase (L) genes (2). An amplicon of approximately 1 kilobase pairs (detected only from symptomatic plants) was gel purified with the Wizard SV Gel and PCR Clean-Up System (Promega), cloned into pGEM-T Easy Vector System (Promega), and sequenced. Three independents clones were sequenced in both directions at Macrogen Inc. (Korea Republic) to generate a consensus sequence (GenBank Accession No. HQ380230) and compared to sequences of other plant rhabdoviruses available on GenBank. The partial L gene sequence of the alfalfa-infecting rhabdovirus shared highest nucleotide (68.0%) and amino acid (76.5%) sequence identity with the cytorhabdovirus Strawberry crinkle virus (Accession No. AY331390). A phylogenetic tree based on partial amino acid sequences of the polymerase gene indicated the alfalfa-infecting virus was more closely related to cytorhabdoviruses than to nucleorhabdoviruses. Symptoms observed resembled those reported for alfalfa plants infected with a plant rhabdovirus named Alfalfa enation virus (1), which has never been fully characterized. Collectively, the data implicate the observed rhabdovirus as the etiological agent. To our knowledge, this is the first report in Argentina (and South America) of a rhabdovirus infecting alfalfa. Additional field surveys and monitoring of vector/s and yield losses need to be conducted. References: (1) B. Alliot and P. A. Signoret. Phytopathol. Z. 74:69, 1972. (2) R. L. Lamprecht et al. Eur. J. Plant Pathol. 123:105, 2009.
A phytoplasma infecting alfalfa crops was detected and characterised in Argentina, the Argentinean Alfalfa witches¢-broom (ArAWB) phytoplasma. Typical witches¢-broom symptoms were observed in diseased alfalfa plants from fields of the 'Cuyo' region in the Andean midwest. Pleomorphic bodies were observed by electron microscopy in sieve tubes of the diseased plants. The results obtained from the sequence homology, similarity coefficients derived from RFLP of the 16S rDNA and phylogenetic analysis led us to include this phytoplasma in the 16Sr VII (Ash Yellows) group. However, the ArAWB phytoplasma showed several differences when compared to other members of group 16Sr VII. The RFLP analysis of partial 16S rRNA gene of two ArAWB isolates, digested with 16 restriction enzymes, showed differences between the ArAWB and the reference strain (AshY1 T ) in six enzyme patterns. Restriction patterns unique for the group and an exclusive HinfI restriction site were found in the ArAWB phytoplasma rDNA. Moreover, the similarity coefficients (0.92-0.86) were lower than those obtained among other group members. The significant differences detected suggested that this phytoplasma belonged to a subgroup different from those described so far. We propose therefore, that the ArAWB phytoplasma should be included in a new VII-C subgroup, closely related to the EriWB phytoplasma (VII-B) described in Brazil.
Strawberry red leaf phytoplasma was found in strawberry plants from production fields in Lules (Tucumá n province) and Bella Vista (Corrientes province), Argentina. Characteristic strawberry red leaf symptoms were stunting, young leaves with yellowing at the edges, mature leaves which curled and were reddish at the abaxial face, flower and fruit deformation and death. The pathogen was detected with phytoplasma-universal primer pairs P1/P7 followed by R16F2n/R16R2 as nested primers in 13 diseased plants. Based on RFLP and sequence analysis of the amplified 16S rRNA gene, the phytoplasma was related to the 16SrXIII group (Mexican periwinkle virescence). In silico the RFLP profile of all the samples analysed revealed the presence of a unique pattern, showing that the novel phytoplasma is different from all the phytoplasmas currently composing the 16SrXIII group. The phylogenetic analysis was consistent with RFLP analysis as the strawberry red leaf phytoplasma was grouped within the 16SrXIII group, but formed a particular cluster. On this basis, the Strawberry red leaf phytoplasma associated with strawberry red leaf disease was assigned to a new subgroup, 16SrXIII-F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.