Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbital experiments. In murine BV-2 microglial cells, we detected a downregulation of ICAM-1 expression in clinorotation experiments and a rapid and reversible downregulation in the microgravity phase of parabolic flight experiments. In contrast, ICAM-1 expression increased in macrophage-like differentiated human U937 cells during the microgravity phase of parabolic flights and in long-term microgravity provided by a 2D clinostat or during the orbital SIMBOX/Shenzhou-8 mission. In nondifferentiated U937 cells, no effect of microgravity on ICAM-1 expression could be observed during parabolic flight experiments. We conclude that disturbed immune function in microgravity could be a consequence of ICAM-1 modulation in the monocyte/macrophage system, which in turn could have a strong impact on the interaction with T lymphocytes and cell migration. Thus, ICAM-1 can be considered as a rapid-reacting and sustained gravity-regulated molecule in mammalian cells.
Background/Aims: Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for general gravity-sensitive mechanisms and to understand how the architecture and function of human cells is related to the gravitational force and therefore adapted to life on Earth. Methods: We investigated the influence of altered gravity in parabolic flight and 2D clinostat experiments on key proteins of activation and signaling in primary T lymphocytes. We quantified components of the signaling cascade 1.) in non-activated T lymphocytes to assess the “basal status” of the cascade and 2.) in the process of activation to assess the signal transduction. Results: We found a rapid decrease of CD3 and IL-2R surface expression and reduced p-LAT after 20 seconds of altered gravity in non-activated primary T lymphocytes during parabolic flight. Furthermore, we observed decreased CD3 surface expression, reduced ZAP-70 abundance and increased histone H3-acetylation in activated T lymphocytes after 5 minutes of clinorotation and a transient downregulation of CD3 and stable downregulation of IL-2R during 60 minutes of clinorotation. Conclusion: CD3 and IL-2R are downregulated in primary T lymphocytes in altered gravity. We assume that a gravity condition around 1g is required for the expression of key surface receptors and appropriate regulation of signal molecules in T lymphocytes.
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
This paper introduces a wireless experiment for sensing and positioning to be deployed in the Columbus module of the International Space Station (ISS). The experiment allows the monitoring of environmental parameters and it demonstrates the motion tracking of astronauts or free-flying objects by utilizing impulse radio-ultra wideband (IR-UWB) in combination with Micro Electromechanical Systems (MEMS) sensors. Recent work revealed a great potential in utilizing WSN in space habitats; however, the focus was only based on sensing in the narrowband Industrial Scientific and Medical (ISM) 2.45 GHz band, whereas this work extends these capabilities by utilizing IR-UWB for positioning and it optionally uses internal light sources for energy harvesting to drive the sensor nodes. The paper describes the operational scenario and the hardware and software concept are presented in detail. Finally the expected results are presented, which focus on the analysis of different use cases for the implementation of wireless sensor networks and to help and to identify new applications for future space missions.
The International Space Station (ISS) is the greatest endeavour in low Earth orbit since the beginning of the space age and the culmination of human outposts like Skylab and Mir. While a clear schedule has yet to be drafted, it is expected that ISS will cease operation in the 2020s. What could be the layout for a human outpost in LEO with lessons learnt from ISS? What are the use cases and applications of such an outpost in the future? The System Analysis Space Segment (SARA) group of the German Aerospace Center (DLR) investigated these and other questions and developed the Orbital Hub concept. In this paper an overview is presented of how the overall concept has been derived and its properties and layout are described. Starting with a workshop involving the science community, the scientific requirements have been derived and strawman payloads have been defined for use in further design activities. These design activities focused on Concurrent Engineering studies, where besides DLR employees also participants from industry and astronauts were involved. The result is an expandable concept that is composed of two main parts, the Base Platform, home for a permanent crew of up to 3 astronauts, and the Free Flyer, an uncrewed autonomous research platform. This modular approach provides one major advantage: the decoupling of the habitat and payload leading to increased quality of the micro gravity environment. The former provides an environment for human physiology experiments, while the latter allows science without the perturbations caused by a crew, e.g. material experiments or Earth observation. The Free Flyer is designed to operate for up to 3 months on its own, but can dock with the space station for maintenance and experiment servicing. It also has a hybrid propulsions system, chemical and electrical, for different applications. The hub's design allows launch with just three launches, as the total mass of all hub parts is about 60,000 kg. The main focus of the design is on autonomy and reducing crew maintenance and repair efforts, and reducing the need for extravehicular activities. Following a description of the design approach and technical details, a cost estimation and a detailed discussion of the use cases for such a station concept, along with the possible scenarios of international cooperation, are also presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.