SummaryThe application of beneficial, plant‐associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non‐sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non‐sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze‐drying, vacuum‐drying, spray‐drying, fluidized bed‐drying, air‐drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre‐conditioning, triggering of exopolysaccharide secretion, ‘helper’ strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals.
Damages of the (agro)ecosystem by extensive use of chemical fertilizers and pesticides, the global dying of bee populations possibly linked to pesticide spraying, and stricter regulations for pesticide use together with successful use of microbials in IPM programs are pushing on the development and commercialization of new microbial products and a large and growing biostimulants and biocontrol market. This review focuses on microbial inoculants including bacteria, fungi, and viruses used as biostimulant or biocontrol agent for foliar application and covers all important steps from inoculant development to successful field application. Topics presented comprise typical spraying equipment including the importance of the spraying process and relating effects, furthermore formulation development including classification and adjuvants, and thirdly regulatory aspects as currently applied or under discussion. Microbial inoculants for foliar spray reported in scientific literature are summarized and contrasted with selected commercial products. Special attention is given to factors most important in microbial spray: (a) type of active ingredient (bacteria, fungi, viruses), (b) mode of action (ingestion, contact, competition), (c) interaction with the plant leaf surface, (d) droplet size in terms of microbe concentration and leaf coverage, and (e) environmental conditions during spraying. Finally, we want to emphasize that timely administration is of utmost importance for successful spraying and maximum efficacy. This might be supported by weather stations and disease/pest models as an important step towards precision farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.