BackgroundThrombin generation (TG) assays evaluate the balance between pro‐ and anticoagulant forces, to better assess bleeding and thrombotic risks. Although TG readouts obtained with the calibrated automated TG have been investigated in multiple clinical conditions, TG still needs standardization and clinical validation. The automated TG instrument ST Genesia® (STG, Stago, Asnières‐sur‐Seine, France) provides a normalization of TG parameters based on a reference plasma aiming to reduce the interlaboratory variability and the variability between different measurement runs.ObjectivesTo evaluate STG in a group of healthy adults.MethodsReference intervals in healthy adults and variability of the new standardized reagents for bleeding (BleedScreen) and thrombophilic (ThromboScreen) conditions were determined using STG.Results TG was measured in platelet‐free plasma (PFP) samples of 123 healthy adults. Reference intervals were determined for TG parameters. Intra‐ and interassay coefficients of variation were calculated on quality controls and PFP samples from healthy adults. Oral contraception (OC) possibly influenced TG parameters, resulting in a higher median and a broader reference interval for peak height and endogenous thrombin potential (ETP) in women aged 20 to 49 years than in all other sex and age categories. Therefore, we propose the following reference interval categories: men, women aged <50 years not using OC, women aged <50 years using OC, and women aged ≥50 years. Normalization was effective to reduce the interassay variability of quality controls for ETP (BleedScreen assay), and peak height and ETP (ThromboScreen assay without thrombomodulin), but had little impact on PFP sample variability.Conclusion STG appears suitable for accurate measurement of TG in healthy adults.
Factor XII (FXII) is a plasma protease that has emerged in recent years as a potential target to treat or prevent pathological thrombosis, to inhibit contact activation in extracorporeal circulation, and to treat the swelling disorder hereditary angioedema. While several protein based inhibitors with high affinity for activated FXII (FXIIa) were developed, the generation of small molecule inhibitors has been challenging.In this work, we have generated a potent and selective FXIIa inhibitor by optimizing a peptide macrocycle that was recently evolved by phage display (K i = 0.84 ± 0.03 nM). A fluorine atom introduced in the paraposition of phenylalanine enhanced the binding affinity as much as 10-fold. Furthermore, we improved the proteolytic stability by substituting the N-terminal arginine by norarginine. The resulting inhibitor combines high inhibitory affinity and selectivity with a good stability in plasma (K i = 1.63 ± 0.18 nM, >27,000-fold selectivity, t 1/2 plasma = 16 ± 4 h). The inhibitor efficiently blocked activation of the intrinsic coagulation pathway in human blood ex vivo.
Improved treatments are needed for hemophilia A and B, bleeding disorders affecting 400 000 people worldwide. We investigated whether targeting protein S could promote hemostasis in hemophilia by rebalancing coagulation. Protein S (PS) is an anticoagulant acting as cofactor for activated protein C and tissue factor pathway inhibitor (TFPI). This dual role makes PS a key regulator of thrombin generation. Here, we report that targeting PS rebalances coagulation in hemophilia. PS gene targeting in hemophilic mice protected them against bleeding, especially when intra-articular. Mechanistically, these mice displayed increased thrombin generation, resistance to activated protein C and TFPI, and improved fibrin network. Blocking PS in plasma of hemophilia patients normalized in vitro thrombin generation. Both PS and TFPIα were detected in hemophilic mice joints. PS and TFPI expression was stronger in the joints of hemophilia A patients than in those of hemophilia B patients when receiving on-demand therapy, for example, during a bleeding episode. In contrast, PS and TFPI expression was decreased in hemophilia A patients receiving prophylaxis with coagulation factor concentrates, comparable to osteoarthritis patients. These results establish PS inhibition as both controller of coagulation and potential therapeutic target in hemophilia. The murine PS silencing RNA approach that we successfully used in hemophilic mice might constitute a new therapeutic concept for hemophilic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.