A Tn551 insertional pleiotropic mutant defective in the production of several exoproteins was isolated from Staphylococcus aureus 196E and characterized. The pleiotropism of the mutant was due to a single insertion of the transposon as evidenced by Southern blot hybridization and by the transfer of its phenotype by transduction to S. aureus ISP479. The mutants showed diminished or null levels of alpha- and beta-hemolysis, DNase, coagulase, and protein A in the supernatants of broth cultures. Production of proteases, lipase, staphylokinase, or enterotoxin A was not modified. The mutants did synthesize the cell-bound form of protein A and also the extracellular form of this protein coded by pRIT11, which lacks the COOH-terminal segment of the molecule. These observations suggest that the sae locus does not involve a positive regulatory gene acting at the transcriptional level. The phenotype of the mutant was different from that of other insertional mutants affecting exoprotein synthesis, such as agr, xpr, or sar. This new mutation has been designated sae (for S. aureus exoprotein expression).
Global regulatory locus sae consists of a two-component signal transduction system coded by saeR and saeS genes that upregulates the transcription of several exoproteins. Northern analysis carried out in this study reveals the synthesis at late and post-exponential phases of a cotranscript of saeR and saeS structural genes of about 2.4 kb. This transcript is diminished in the isogenic agr:: tetM mutant. Likewise, transcriptional fusion experiments show that sae expression is downregulated in the agr null mutant. Complementation analyses with plasmids carrying fragments of about 1.2 or 0.2 kbp upstream of saeR-saeS genes, which restore fully or only partially, respectively, the wild-type phenotype to the sae mutant, are in agreement with two initiation start points of transcription revealed by primer extension experiments. This work, as well as previous studies, reveals a complex hierarchical regulatory network involving several loci that control the expression of virulence determinants in S. aureus.
Coagulase-negative staphylococci (CNS) are a common cause of bovine subclinical mastitis (SCM). The prevalence of CNS species causing SCM identified by genotyping varies among countries. Overall, the antimicrobial resistance in this group of organisms is increasing worldwide; however, little information exists about a CNS species resistant to antibiotics. The aim of the present study was to genotypically characterize CNS at species level and to determine the prevalence and antibiotic resistance profiles of CNS species isolated from bovine SCM in 51 dairy herds located in the central region of the province of Cordoba, Argentina. In this study, we identified 219 CNS isolates at species level by PCR-restriction fragment length polymorphism of the groEL gene. Staphylococcus chromogenes (46.6%) and Staphylococcus haemolyticus (32%) were the most prevalent species. A minimum of three different CNS species were present in 41.2% of the herds. S. chromogenes was isolated from most of the herds (86.3%), whereas S. haemolyticus was isolated from 66.7% of them. The broth microdilution method was used to test in vitro antimicrobial susceptibility. Resistance to a single compound or two related compounds was expressed in 43.8% of the isolates. S. chromogenes and S. haemolyticus showed a very high proportion of isolates resistant to penicillin. Resistance to two or more non-related antimicrobials was found in 30.6% of all CNS. S. haemolyticus exhibited a higher frequency of resistance to two or more non-related antimicrobials than S. chromogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.