Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.
BackgroundCassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality.ResultsAmong the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total β-carotene, containing all-E-, 9-Z-, and 13-Z-β-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no α-carotene was observed, variable amounts of a α-ring derived xanthophyll, lutein, was detected; with greater accumulation of α-ring xanthophylls than of β-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total β-carotene accumulation.ConclusionsAmong the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total β-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0826-0) contains supplementary material, which is available to authorized users.
This study reports the identification of a new class of cassava (Manihot esculenta Crantz) with a storage root showing unusual free sugar accumulation and novel starch. Twenty-seven clones high in free sugar were identified under cultivation in primitive rural community areas in the Amazon. Iodine test and glucose oxidase-peroxidase reagent strips were used, in the field, for identification of starch and glucose, respectively. Five out of these 27 clones of cassava were cultivated at EMBRAPA Genetic Resources and Biotechnology and used for biochemical characterization, starch synthesis enzyme activities and gene expression analysis. Carbohydrates were fractioned into free sugar, polymerized water-soluble and -insoluble alpha-polyglucan. Clones of series CAS36 accumulate over 100 times more free sugar (mainly glucose) than commercial varieties. Monosaccharide composition analysis revealed one clone with distinct water-soluble sugars not present in the commercial cultivar. Structure analysis of the water-soluble and -insoluble alpha-polyglucan revealed the presence of a glycogen-like starch in clone CAS36.1. This clone indicated disruption in the starch synthesis pathway for enzyme activities and protein blot analyses in ADPG-pyrophosphorylase and branching enzyme, and their corresponding protein. Gene expression analysis indicated the lack of transcript for the gene coding for branching enzyme, but not for the gene coding for the ADPG-pyrophosphorylase small subunit. In addition, the pattern of distribution of sugar and starch content showed to be related to tissue age in the storage root.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.