Sirtuins are a highly conserved class of NAD+-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is lacking so far. Here we present high-resolution structures of human Sirt2 in complex with highly selective drug-like inhibitors that show a unique inhibitory mechanism. Potency and the unprecedented Sirt2 selectivity are based on a ligand-induced structural rearrangement of the active site unveiling a yet-unexploited binding pocket. Application of the most potent Sirtuin-rearranging ligand, termed SirReal2, leads to tubulin hyperacetylation in HeLa cells and induces destabilization of the checkpoint protein BubR1, consistent with Sirt2 inhibition in vivo. Our structural insights into this unique mechanism of selective sirtuin inhibition provide the basis for further inhibitor development and selective tools for sirtuin biology.
Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5.
Sirtuins are NAD+ dependent lysine deacylases involved in many
regulatory processes such as control of metabolic pathways, DNA repair and stress
response. Modulators of sirtuin activity are required as tools for uncovering the
biological function of these enzymes and as potential therapeutic agents. Systematic
discovery of such modulators is hampered by the lack of direct and continuous
activity assays. The present study describes a novel continuous assay based on the
increase of a fluorescence signal subsequent to sirtuin mediated removal of a
fluorescent acyl chain from a modified TNFα-derived peptide. This
substrate is well recognized by human sirtuins 1–6 and represents the
best sirtuin 2 substrate described so far with a kcat/KM-value
of 176 000 M−1s−1.
These extraordinary substrate properties allow the first determination of
Ki-values for the specific Sirt2 inhibitory peptide S2iL5
(600 nM) and for the quasi-universal sirtuin inhibitor peptide thioxo
myristoyl TNFα (80 nM).
Novel assays and experimental approaches for studying Sirtuin activity have been instrumental for major progress in understanding functions of Sirtuins and how these enzymes can be modulated with drugs. The improved tools and mechanistic insights now enable a more efficient development of Sirtuin modulators for in vivo studies and therapeutic applications.
Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes like control of metabolic pathways, DNA repair, and stress response. Modulators of sirtuin activity are needed as tools for uncovering the biological function of these enzymes and as potential therapeutics. Systematic discovery of such modulators is hampered by the lack of efficient and simple continuous activity assays running at low sirtuin concentrations in microtiter plates. Here we describe an improved continuous sirtuin 5 assay based on the coupling of the sirtuin reaction to a proteolytic cleavage using internally fluorescence-quenched substrates. Systematic optimization of a carbamoyl phosphate synthetase 1 derived, glutarylated peptide yielded a Sirt5 substrate with k(cat)/K(M) value of 337,000 M(-1) s(-1), which represents the best sirtuin substrate described so far. These extraordinary substrate properties allowed reliable determination of Ki values for different inhibitors in the presence of only 10 nM sirtuin in microtiter plate format. Assay conditions could be transferred effectively to other lysine deacetylases, like sirtuin 2 and sirtuin 3, which now enables more efficient development of sirtuin targeting drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.