Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events. O NE of the primary strengths of the genus Drosophila as a model system has been the relative ease of generating detailed cytogenetic maps. Indeed, the first definitive mapping of genes to chromosomes Genetics 179: 1601-1655 ( July 2008) was performed in Drosophila melanogaster (Bridges 1916). The subsequent discovery of polytene chromosomes in the salivary glands in this same species (Painter 1934) and their codification into fine-structure genetic/ cytogenetic maps represents perhaps one of the first forays into ''genomics.'' Polytene maps (Bridges 1935;Lefevre 1976) provided an important genetic tool for mapping genes, for detecting genetic diversity within populations, and for inferring phylogenies among related species (Dobzhansky and Sturtevant 1938;Judd et al. 1972;Ashburner and Lemeunier 1976;Lemeunier and Ashburner 1976). Sturtevant and Tan (1937) laid the groundwork for comparative genomics when they established that genes within the chromosomal arms are conserved or syntenic among species. In an insightful melding of the gene mapping and evolutionary studies, H. J. Muller (1940) proposed that the genomes of Drosophila species were subdivided into a set of homologous elements represented by chromosome arms. What Muller (1940) noted, which was subsequently elaborated on by Sturtevant and Novitski (1941), was that the presumed homologs of identified mutant alleles within a chromosome arm of D. melanogaster were also confined to a single arm in other species within the genus where mapping data were available. Using D. melanogaster as a reference, Muller proposed that each of the five major chromosome arms plus the dot chromosome be given a letter designation (A-F) and that this nomenclature be used to identify equivalent linkage groups within the genus.The an...
The presence and integrity of the P transposon and the gypsy retrotransposon in the genome of 18 samples of natural Drosophila willistoni populations collected from a large area of South America were Southern blot screened using Drosophila melanogaster probes. The aim of this screening was provide further knowledge-base on the geographical distribution of D. willistoni and to carry out an inter-population analysis of the P and gypsy elements present in the genomes of the populations analyzed. The fragment patterns obtained indicate that both the P and gypsy elements are ancient in the D. willistoni genome, but whereas the gypsy retroelement appears to be invariable and stable the P element varies between populations and appears to still have some capacity for mobilization.
Abstract. New photomap of Anopheles ( Nyssorhynchus ) darlingi Root, 1926, is described for a population from Guajará-Mirim, State of Rondonia, Brazil. The number of sections in the previous A. darlingi reference map was maintained and new subsections were added to the five chromosome arms. Breakage points of paracentric inversions had been previously incorporated into the photomap of this species. An additional inversion is reported, called 3Lc, totaling 14 inversions in the A. darlingi chromosome arms. The proposed photomap is potentially useful for further evolutionary studies in addition to physical and in silico chromosome mapping using A. darlingi genomic and transcriptome sequences. Furthermore, in our attempt to compare sections of the 2R chromosome arm of A. darlingi with Anopheles funestus , Anopheles stephensi , and Anopheles gambiae , we found great differences in the arrangement of the polytene chromosome bands, which are consistent with the known phylogenetic divergence of these species.
Chromosomal polymorphism in natural populations of Drosophila willistoni from Uruguay and southern Brazil was investigated in order to understand the genetic characteristics and evolutionary potential of these almost geographically marginal populations. The level of chromosomal polymorphism in samples from Uruguay was higher than in those from the southernmost Brazilian state of Rio Grande do Sul. The increase in the polymorphism of these populations, in which the species almost reaches its southern limit, contradicts the low level of paracentric inversion polymorphism expected under the central-marginal chromosomal polymorphism cline previously reported. The high frequency of some inversions and the presence of unique inversions in samples from Uruguay indicate the uniqueness of these populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.