CA125 is an ovarian cancer antigen whose recently elucidated primary structure suggests that CA125 is a giant mucin-like glycoprotein present on the cell surface of tumor cells. Here, we establish a functional link between CA125 and β-galactoside-binding, cell-surface lectins, which are components of the extracellular matrix implicated in the regulation of cell adhesion, apoptosis, cell proliferation and tumor progression. On the basis of mass spectrometry and immunological analyses, we find that CA125 is a counter receptor for galectin-1, as both soluble and membrane-associated fragments of CA125 derived from HeLa cell lysates are shown to bind specifically to human galectin-1 with high efficiency. This interaction is demonstrated (1) to depend on β-galactose-terminated, O-linked oligosaccharide chains of CA125, (2) to be preferential for galectin-1 versus galectin-3 and (3) to be regulated by the cellular background in which CA125 is expressed. Despite lacking a conventional signal peptide, a CA125 C-terminal fragment of 1148 amino acids, representing less than 10% of the full-length protein, retains the ability to integrate into secretory membranes such as the endoplasmic reticulum (ER) and the Golgi, and is targeted to the plasma membrane by conventional secretory transport. As demonstrated by a novel assay that reconstitutes non-conventional secretion of galectin-1 based on fluorescence-activated cell sorting (FACS), we find that tumor-derived HeLa cells expressing endogenous CA125 present more than ten times as much galectin-1 on their surface compared with non-tumor-derived, CA125-deficient CHO cells. Intriguingly, both the galectin-1 expression level and the cell-surface binding capacity for galectin-1 are shown to be similar in CHO and HeLa cells, suggesting that CA125 might be a factor involved in the regulation of galectin-1 export to the cell surface.
Basic fibroblast growth factor (FGF-2) is a secretory protein that lacks a signal peptide. Consistently, FGF-2 has been shown to be secreted by an ER-Golgi-independent mechanism; however, the machinery mediating this process remains to be established at the molecular level. Here we introduce a novel experimental system based on flow cytometry that allows the quantitative assessment of nonclassical FGF-2 secretion in living cells. Stable cell lines have been created by retroviral transduction that express various kinds of FGF-2-GFP fusion proteins in a doxicyclin-dependent manner. Following induction of protein expression, biosynthetic FGF-2-GFP is shown to translocate to the outer surface of the plasma membrane as determined by both fluorescence activated cell sorting (FACS) and confocal microscopy. Both N-and C-terminal GFP tagging of FGF-2 is compatible with FGF-2 export, which is shown to occur in a controlled fashion rather than through unspecific release. The experimental system described has strong implications for the identification of both FGF-2 secretion inhibitors and molecular components involved in FGF-2 secretion.In the second part of this study we made use of the FGF-2 export system described to analyze the fate of biosynthetic FGF-2-GFP following export to the extracellular space. We find that secreted FGF-2 fusion proteins accumulate in large heparan sulfate proteoglycan (HSPG)-containing protein clusters on the extracellular surface of the plasma membrane. These microdomains are shown to be distinct from caveolae-like lipid rafts known to play a role in FGF-2-mediated signal transduction. Since CHO cells lack FGF high-affinity receptors (FGFRs), it can be concluded that FGFRs mediate the targeting of FGF-2 to lipid rafts. Consistently, FGF-2-GFP-secreting CHO cells do not exhibit increased proliferation activity. Externalization and deposition of biosynthetic FGF-2 in HSPG-containing protein clusters are independent processes, as a soluble secreted intermediate was demonstrated. The balance between intracellular FGF-2 and HSPG-bound secreted FGF-2 is shown not to be controlled by the availability of cell surface HSPGs, indicating that the FGF-2 secretion machinery itself is ratelimiting.
Galectin-1 is a component of the extracellular matrix as well as a ligand of cell surface counter receptors such as β-galactoside–containing glycolipids, however, the molecular mechanism of galectin-1 secretion has remained elusive. Based on a nonbiased screen for galectin-1 export mutants we have identified 26 single amino acid changes that cause a defect of both export and binding to counter receptors. When wild-type galectin-1 was analyzed in CHO clone 13 cells, a mutant cell line incapable of expressing functional galectin-1 counter receptors, secretion was blocked. Intriguingly, we also find that a distant relative of galectin-1, the fungal lectin CGL-2, is a substrate for nonclassical export from Chinese hamster ovary (CHO) cells. Alike mammalian galectin-1, a CGL-2 mutant defective in β-galactoside binding, does not get exported from CHO cells. We conclude that the β-galactoside binding site represents the primary targeting motif of galectins defining a galectin export machinery that makes use of β-galactoside–containing surface molecules as export receptors for intracellular galectin-1.
Various molecular mechanisms of unconventional secretion of fibroblast growth factor 2 and galectin-1 have been proposed. A non-vesicular pathway that is based on direct translocation across the plasma membrane has been described. In other studies, however, release into the extracellular space of cell-derived vesicles was implicated in both FGF-2 and Gal-1 secretion. Such vesicles were proposed to originate either from plasma membrane shedding or by the release of exosomes. Employing an inhibitor of plasma membrane blebbing and based on a quantitative biochemical analysis of cell culture supernatants for vesicles potentially carrying FGF-2 or Gal-1, we demonstrate that both FGF-2 and Gal-1 are not exported by shedding of plasma membrane-derived vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.