Living organisms are continuously exposed to environmental pollutants. Because of its critical location, the skin is a major interface between the body and the environment and provides a biological barrier against an array of chemical and physical environmental pollutants. The skin can be defined as our first defense against the environment because of its constant exposure to oxidants, including ultraviolet (UV) radiation and other environmental pollutants such as diesel fuel exhaust, cigarette smoke (CS), halogenated hydrocarbons, heavy metals, and ozone (O3). The exposure to environmental pro-oxidant agents leads to the formation of reactive oxygen species (ROS) and the generation of bioactive molecules that can damage skin cells. This short review provides an overview of the effects and mechanisms of action of CS, O3, and UV on cutanous tissues.
Background Information about the harmful effects of vaping is sparse and inconsistent, therefore, since the use of electronic cigarettes (e-CIGs) has become increasingly popular as a tool to limit tobacco smoking, it is urgent to establish the safety or the toxicity of the liquid vaporized by the atomizer of the commercial e-CIGs. Methods Skin (HaCaT) and lung (A549) cells, the main targets of cigarette smoke, were exposed to e-CIG vapor (e-CIG Mini Touch T-Fumo T-TEX) and cigarette smoke (UK research cigarette) in a smoke chamber in vitro. The cytotoxic effect of the exposure was analyzed in both cell types by ultrastructural morphology, Trypan Blue exclusion test and LDH assay. In addition, pro-inflammatory cytokines were measured in culture medium by the Bio-Plex cytokine assay kit. Results The cytotoxic components of e-CIG were restrained to the flavoring compound and, to a lesser extent, to nicotine and their effects were comparable to that of cigarette smoke. Humectants alone exhibited no cytotoxicity but induced the release of cytokines and pro-inflammatory mediators, mainly in keratinocytes. Conclusions Based on our results, we can state that e-CIG vapors exposure is not completely harmless, although far less toxic than CS. In fact, besides the deleterious effect of flavor and nicotine, even the humectants alone are able to evocate some adverse cellular events, such as enhanced cytokines release. This study will hopefully promote the development of truly innocuous e-CIGs to help people quit smoking.
Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles.
Mucuna pruriens (Fabaceae) is an established herbal drug used for the management of male infertility, nervous disorders, and also as an aphrodisiac. It has been shown that its seeds are potentially of substantial medicinal importance. The ancient Indian medical system, Ayurveda, traditionally used M. pruriens, even to treat such things as Parkinson's disease. M. pruriens has been shown to have anti-parkinson and neuroprotective effects, which may be related to its anti-oxidant activity. In addition, anti-oxidant activity of M. pruriens has been also demonstrated in vitro by its ability to scavenge DPPH radicals and reactive oxygen species. In this review the medicinal properties of M. pruriens are summarized, taking in consideration the studies that have used the seeds extracts and the leaves extracts.
Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H 2 O 2 ) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H 2 O 2 , induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.