U-230 Th ages are derived as described in (14). See (34) for a review of 230 Th dating in magmatic systems. The reported ages are taken to be those of crystallization because of the relatively tight packing of ions within allanite and the tetravalent charge of Th [compare (35)]. Reequilibration of Th during magmatic residence will be insignificant: Based on the predictive model of Fortier and Giletti (36), Th diffusion would only affect ϳ2 m in allanite over a period of 100,000 years at the highest reported temperature of the YT T magma (ϳ780°C). Uncertainty in the calculated ages due to possible variation of initial 230 Th/ 232 Th during magmatic evolution can be evaluated by assuming that observed eruption-age 230 Th/ 232 Th activity ratio variations of the YT T (0.358 to 0.433) are representative of the initial range of Th-isotope composition. For reported ages Ͻ120 ka, the uncertainty in age associated with the initial ratio is within the analytical uncertainty on the ages, except for the youngest allanite domains which could not have grown from melts that had Th isotope compositions significantly different from that of their host. Reported ages that are 120 to 200 ka could be at most a few percent to, for the older of these, as much as 27% older than allowed by the analytical uncertainty. Those few allanites with ages Ͼ200 ka could be substantially older. Thus, the age ranges reported here are conservative. 45. We are grateful to C. Chesner for samples; C. Coath, F. Ramos, and F. Kyte for analytical help; and especially J. Simon and G. Bergantz for insightful discussions. Anonymous referees provided very helpful reviews. show that future heat waves in these areas will become more intense, more frequent, and longer lasting in the second half of the 21st century. Observations and the model show that present-day heat waves over Europe and North America coincide with a specific atmospheric circulation pattern that is intensified by ongoing increases in greenhouse gases, indicating that it will produce more severe heat waves in those regions in the future.
Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 • C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017-2018 time frame, and output from the climate modelPublished by Copernicus Publications on behalf of the European Geosciences Union.
Investments aimed at improving agricultural adaptation to climate change inevitably favor some crops and regions over others. An analysis of climate risks for crops in 12 food-insecure regions was conducted to identify adaptation priorities, based on statistical crop models and climate projections for 2030 from 20 general circulation models. Results indicate South Asia and Southern Africa as two regions that, without sufficient adaptation measures, will likely suffer negative impacts on several crops that are important to large food-insecure human populations. We also find that uncertainties vary widely by crop, and therefore priorities will depend on the risk attitudes of investment institutions.
Abstract:There is now a large published literature on the strengths and weaknesses of downscaling methods for different climatic variables, in different regions and seasons. However, little attention is given to the choice of downscaling method when examining the impacts of climate change on hydrological systems. This review paper assesses the current downscaling literature, examining new developments in the downscaling field specifically for hydrological impacts. Sections focus on the downscaling concept; new methods; comparative methodological studies; the modelling of extremes; and the application to hydrological impacts.Consideration is then given to new developments in climate scenario construction which may offer the most potential for advancement within the 'downscaling for hydrological impacts' community, such as probabilistic modelling, pattern scaling and downscaling of multiple variables and suggests ways that they can be merged with downscaling techniques in a probabilistic climate change scenario framework to assess the uncertainties associated with future projections. Within hydrological impact studies there is still little consideration given to applied research; how the results can be best used to enable stakeholders and managers to make informed, robust decisions on adaptation and mitigation strategies in the face of many uncertainties about the future. It is suggested that there is a need for a move away from comparison studies into the provision of decision-making tools for planning and management that are robust to future uncertainties; with examination and understanding of uncertainties within the modelling system.
Recent coordinated efforts, in which numerous climate models have been run for a common set of experiments, have produced large datasets of projections of future climate for various scenarios. Those multi-model ensembles sample initial condition, parameter as well as structural uncertainties in the model design, and they have prompted a variety of approaches to quantify uncertainty in future climate in a probabilistic way. This paper outlines the motivation for using multi-model ensembles, reviews the methodologies published so far and compares their results for regional temperature projections. The challenges in interpreting multi-model results, caused by the lack of verification of climate projections, the problem of model dependence, bias and tuning as well as the difficulty in making sense of an 'ensemble of opportunity', are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.