Classical methods for protein extraction from microorganisms, used for large-scale treatments such as mechanical or chemical processes, affect the integrity of extracted cytosolic protein by releasing proteases contained in vacuoles. Our previous experiments on flow-process yeast electroextraction proved that pulsed electric field technology allows us to preserve the integrity of released cytosolic proteins by keeping intact vacuole membranes. Furthermore, large volumes are easily treated by the flow technology. Based on this previous knowledge, we developed a new protocol in order to electroextract total cytoplasmic proteins from microalgae (Nannochloropsis salina and Chlorella vulgaris). Given that induction of electropermeabilization is under the control of the target cell size, as the mean diameter for N. salina is only 2.5 μm, we used repetitive 2-ms-long pulses of alternating polarities with stronger field strengths than previously described for yeasts. The electric treatment was followed by a 24-h incubation period in a salty buffer. The amount of total protein released was evaluated by a classical Bradford assay. A more accurate evaluation of protein release was obtained by SDS-PAGE. Similar results were obtained with C. vulgaris under milder electrical conditions, as expected from their larger size. This innovative technology designed in our group should become familiar in the field of microalgae biotechnology.
Pelagic processes and their relation to vertical flux have been studied in the Norwegian and Greenland Seas since 1986. Results of long-term sediment trap deployments and adjoining process studies are presented, and the underlying methodological and conceptional background is discussed. Recent extension of these investigations at the Barents Sea continental slope are also presented. With similar conditions of input irradiation and nutrient conditions, the Norwegian and Greenland Seas exhibit comparable mean annual rates of new and total production. Major differences can be found between these regions, however, in the hydrographic conditions constraining primary production and in the composition and seasonal development of the plankton. This is reflected in differences in the temporal patterns of vertical particle flux in relation to new production in the euphotic zone, the composition of particles exported and in different processes leading to their modification in the mid-water layers.In the Norwegian Sea heavy grazing pressure during early spring retards the accumulation of phytoplankton stocks and thus a mass sedimentation of diatoms that is often associated with spring blooms. This, in conjunction with the further seasonal development of zooplankton populations, serves to delay the annual peak in sedimentation to summer or autumn. Carbonate sedimentation in the Norwegian Sea, however, is significantly higher than in the Greenland Sea, where physical factors exert a greater control on phytoplankton development and the sedimentation of opal is of greater importance. In addition to these comparative long-term A. A n t i a • E. B a u e r f e i n d -O. H a u p t • W. K o e v e E. M a c h a d o • I. P e e k e n -R. Peinert ( [ ] ) -S. R e i t m e i e r C. T h o m s e n • M. W u n s c h • U. Zeller • B. Zeitzschel Institut for M e e r e s k u n d e , D t i s t e r n b r o o k e r W e g 20, D-24105 Kiel, G e r m a n y email: rpeinert@IFM.uni-kiel.d400.de B. yon B o d u n g e n • M. Voss Institut far Ostseeforschung, Seestrasse 15, D-18119 W a r n e m t i n d e , G e r m a n ystudies a case study has been carried out at the continental slope of the Barents Sea, where an emphasis was laid on the influence of resuspension and across-slope lateral transport with an analysis of suspended and sedimented material.
Microalgae are a promising resource for the highly sustainable production of various biomaterials (food and feed), high‐value biochemicals, or biofuels. However, factors influencing the valued lipid production from oleaginous algae require a more detailed investigation. This study elucidates the variations in lipid metabolites between a marine diatom (Cylindrotheca closterium) and a freshwater green alga (Scenedesmus sp.) under nitrogen starvation at the molecular species level, with emphasis on triacylglycerols using liquid chromatography–electrospray ionization mass spectrometry techniques. A comprehensive analysis was carried out by comparing the changes in total lipids, growth kinetics, fatty acid compositions, and glycerolipid profiles at the molecular species level at different time points of nitrogen starvation. A total of 60 and 72 triacylglycerol molecular species, along with numerous other polar lipids, were identified in Scenedesmus sp. and C. closterium, respectively, providing the most abundant triacylglycerol profiles for these two species. During nitrogen starvation, more triacylglycerol of Scenedesmus sp. was synthesized via the “eukaryotic pathway” in the endoplasmic reticulum, whereas the increase in triacylglycerol in C. closterium was mainly a result of the “prokaryotic pathway” in the chloroplasts after 96 h of nitrogen starvation. The distinct responses of lipid synthesis to nitrogen starvation exhibited by the two species indicate different strategies of lipid accumulation, notably triacylglycerols, in green algae and diatoms. Scenedesmus sp. and Cylindrotheca closterium could serve as excellent candidates for the mass production of biofuels or polyunsaturated fatty acids for nutraceutical purposes.
The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.