The implementation of a fully instrumented, automated and simulation-enabled engineering software platform capable of automating the currently still manual model-based systems engineering (MBSE) design process for physical systems architecture generation and optimization in an aircraft wing is presented. The software platform uses graph-based design languages to integrate and entirely automate the mainly manual packing, piping and harness routing design. This design automation and optimization is achieved by a novel software stack of an optimization software coupled with a design compiler. It is shown that through rule-based model generation by a design compiler in the form of a design graph as a central data model, a cross-domain data consistency is achieved. This allows for automated execution and coupling of engineering tasks over several different domains such as packing, piping and routing design to converge to an optimized wing physical architecture design variant in agreement with given predetermined design constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.