Abstract. Much of our knowledge about future changes in precipitation relies on global (GCMs) and/or regional climate models (RCMs) that have resolutions which are much coarser than typical spatial scales of precipitation, particularly extremes. The major problems with these projections are both climate model biases and the gap between gridbox and point scale. Wong et al. (2014) developed a model to jointly bias correct and downscale precipitation at daily scales. This approach, however, relied on pairwise correspondence between predictor and predictand for calibration, and, thus, on nudged simulations which are rarely available. Here we present an extension of this approach that separates the downscaling from the bias correction and in principle is applicable to free-running GCMs/RCMs. In a first step, we bias correct RCM-simulated precipitation against gridded observations at the same scale using a parametric quantile mapping (QM grid ) approach. In a second step, we bridge the scale gap: we predict local variance employing a regression-based model with coarse-scale precipitation as a predictor. The regression model is calibrated between gridded and point-scale (station) observations. For this concept we present one specific implementation, although the optimal model may differ for each studied location. To correct the whole distribution including extreme tails we apply a mixture distribution of a gamma distribution for the precipitation mass and a generalized Pareto distribution for the extreme tail in the first step. For the second step a vector generalized linear gamma model is employed. For evaluation we adopt the perfect predictor experimental setup of VALUE. We also compare our method to the classical QM as it is usually applied, i.e., between RCM and point scale (QM point ). Precipitation is in most cases improved by (parts of) our method across different European climates. The method generally performs better in summer than in winter and in winter best in the Mediterranean region, with a mild winter climate, and worst for continental winter climate in Mid-and eastern Europe or Scandinavia. While QM point performs similarly (better for continental winter) to our combined method in reducing the bias and representing heavy precipitation, it is not capable of correctly modeling point-scale spatial dependence of summer precipitation. A strength of this two-step method is that the best combination of bias correction and downscaling methods can be selected. This implies that the concept can be extended to a wide range of method combinations.
The beginning of the 21st century was marked by a number of severe summer floods in Central Europe associated with extreme precipitation (e.g., Elbe 2002, Oder 2010 and Danube 2013). Extratropical storms, known as Vb-cyclones, cause summer extreme precipitation events over Central Europe and can thus lead to such floodings. Vb-cyclones develop over the Mediterranean Sea, which itself strongly warmed during recent decades. Here we investigate the influence of increased Mediterranean Sea surface temperature (SST) on extreme precipitation events in Central Europe. To this end, we carry out atmosphere model simulations forced by average Mediterranean SSTs during 1970–1999 and 2000–2012. Extreme precipitation events occurring on average every 20 summers in the warmer-SST-simulation (2000–2012) amplify along the Vb-cyclone track compared to those in the colder-SST-simulation (1970–1999), on average by 17% in Central Europe. The largest increase is located southeast of maximum precipitation for both simulated heavy events and historical Vb-events. The responsible physical mechanism is increased evaporation from and enhanced atmospheric moisture content over the Mediterranean Sea. The excess in precipitable water is transported from the Mediterranean Sea to Central Europe causing stronger precipitation extremes over that region. Our findings suggest that Mediterranean Sea surface warming amplifies Central European precipitation extremes.
To investigate the influence of atmospheric model resolution on the representation of daily
Abstract. Much of our knowledge about future changes in precipitation relies on global (GCM) and/or regional climate models (RCM) that have resolutions which are much coarser than typical spatial scales of precipitation, particularly extremes. The major problems with these projections are both climate model biases and the gap between gridbox and point scale. Wong et al. developed a model to jointly bias correct and downscale precipitation at daily scales. This approach, however, relied on pairwise correspondence between predictor and predictand for calibration, and thus, on nudged simulations which are rarely available. Here we present an extension of this approach that separates the downscaling from the bias correction and in principle is applicable to free running GCMs/RCMs. In a first step, we bias correct RCM-simulated precipitation against gridded observations at the same scale using a parametric quantile mapping approach. To correct the whole distribution including extreme tails we apply a mixture distribution of a gamma distribution for the precipitation mass and a generalized Pareto distribution for the extreme tail. In a second step, we bridge the scale gap: we predict local variance employing a vector generalized linear gamma model (VGLM gamma) with the bias corrected time series as predictor. The VGLM gamma model is calibrated between gridded and point scale (station) observations. For evaluation we adopt the perfect predictor experimental setup of VALUE. Precipitation is in most cases improved by (parts of) our method across different European climates. The method generally performs better in summer than in winter and in winter best in the Mediterranean region with a mild winter climate and worst for continental winter climate in mid & eastern Europe or Scandinavia. A strength of this two-step method is that the best combination of bias correction and downscaling methods can be selected. This implies that the concept can be extended to a wide range of method combinations.
Abstract. Extended periods without precipitation, observed for example in central Europe including Germany during the seasons from 2018 to 2020, can lead to water deficit and yield and quality losses for grape and wine production. Irrigation infrastructure in these regions to possibly overcome negative effects is largely non-existent. Regional climate models project changes in precipitation amounts and patterns, indicating an increase in frequency of the occurrence of comparable situations in the future. In order to assess possible impacts of climate change on the water budget of grapevines, a water balance model was developed, which accounts for the large heterogeneity of vineyards with respect to their soil water storage capacity, evapotranspiration as a function of slope and aspect, and viticultural management practices. The model was fed with data from soil maps (soil type and plant-available water capacity), a digital elevation model, the European Union (EU) vineyard-register, observed weather data, and future weather data simulated by regional climate models and downscaled by a stochastic weather generator. This allowed conducting a risk assessment of the drought stress occurrence for the wine-producing regions Rheingau and Hessische Bergstraße in Germany on the scale of individual vineyard plots. The simulations showed that the risk for drought stress varies substantially between vineyard sites but might increase for steep-slope regions in the future. Possible adaptation measures depend highly on local conditions and are needed to make targeted use of water resources, while an intense interplay of different wine-industry stakeholders, research, knowledge transfer, and local authorities will be required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.