The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep‐sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep‐sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold‐water coral and commercially important deep‐sea fish species under present‐day (1951–2000) environmental conditions and to project changes under severe, high emissions future (2081–2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%–100% in suitable habitat for cold‐water corals and a shift in suitable habitat for deep‐sea fishes of 2.0°–9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%–30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%–42% of present‐day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%–14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep‐sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area‐based planning and management tools.
A set of 40 Uranium-series datings obtained on the reef-forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata revealed that during the past 400 kyr their occurrence in the Gulf of Cádiz (GoC) was almost exclusively restricted to glacial periods. This result strengthens the outcomes of former studies that coral growth in the temperate NE Atlantic encompassing the French, Iberian and Moroccan margins dominated during glacial periods, whereas in the higher latitudes (Irish and Norwegian margins) extended coral growth prevailed during interglacial periods. Thus it appears that the biogeographical limits for sustained cold-water coral growth along the NE Atlantic margin are strongly related to climate change. By focussing on the last glacial-interglacial cycle, this study shows that palaeo-productivity was increased during the last glacial. This was likely driven by the fertilisation effect of an increased input of aeolian dust and locally intensified upwelling.After the Younger Dryas cold event, the input of aeolian dust and productivity significantly decreased concurrent with an increase in water temperatures in the GoC. This primarily resulted in reduced food availability and caused a widespread demise of the formerly thriving coral ecosystems. Moreover, these climate induced changes most likely caused a latitudinal shift of areas with optimum coral growth conditions towards the northern NE Atlantic where more suitable environmental conditions established with the onset of the Holocene.
U-series age patterns obtained on reef framework-forming cold-water corals collected over a nearly 6,000 km long continental margin sector, extending from off Mauritania to the south-western Barents Sea reveal strong climate influences on the geographical distribution and sustained development of these ecosystems. During glacial times densely populated cold-water coral reefs flourished in the temperate east Atlantic, where at present only scarce live coral occurrences exist. In contrast, climate warming induces a rapid northward colonization of cold-water coral reefs with the biogeographic limit advancing from ∼45• N to ∼70• N. Thus, we invoke here that north-south oscillations of the polar front during the past glacial-interglacial cycles and the consequent displacement of cold nutrient-rich intermediate waters and productivity drives the decline and expansion of cold-water coral ecosystems and its biogeographic limits in the northeast Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.