Fragile X syndrome is the most common form of inherited mental retardation and is caused by the absence of expression of the FMR1 gene. The protein encoded by this gene, Fmrp, is an RNA-binding protein that binds a subset of mRNAs and regulates their translation, leading to normal cognitive function. Although the association with RNAs is well established, it is still unknown how Fmrp finds and assembles with its RNA cargoes and how these activities are regulated. We show here that Fmrp is post-translationally methylated, primarily on its arginine-glycine-glycine box. We identify the four arginines that are methylated and show that cellular Fmrp is monomethylated and asymmetrically dimethylated. We also show that the autosomal paralog Fxr1 and the Drosophila ortholog dFmr1 are methylated post-translationally. Recombinant protein arginine methyl transferase 1 (PRMT1) methylates Fmrp on the same arginines in vitro as in cells. In vitro methylation of Fmrp results in reduced binding to the minimal RNA sequence sc1, which encodes a stem loop G-quartet structure. Our data identify an additional mechanism, arginine methylation, for modifying Fmrp function and suggest that methylation occurs to limit or modulate RNA binding by Fmrp.
Individuals with fragile X syndrome (FXS) are cognitively impaired and have marked speech delays and deficits. Our goal was to characterize expression of FMRP, the fragile X mental retardation protein, encoded by the gene FMR1, in an animal model that learns to vocalize, namely the zebra finch Taeniopygia guttata (Tgu). We cloned and sequenced the zebra finch ortholog of FMR1 (TguFmr1) and developed an antibody that recognizes TguFmrp specifically. TguFmrp has structural features similar to its human ortholog FMRP. Because FXS patients exhibit sensorimotor deficits, we examined TguFmrp expression prior to, during, and after sensorimotor song learning in zebra finches. We found that TguFmrp is expressed throughout the brain and in four major song nuclei of the male zebra finch brain, primarily in neurons. Additionally, prior to sensorimotor learning, we observed elevated TguFmrp expression in the RA of post-hatch day 30 males, compared to the surrounding telencephalon, suggesting a preparation for this stage of song learning. Finally, we observed variable TguFmrp expression in the RA of adolescent and adult males: in some males it was elevated and in others it was comparable to the surrounding telencephalon. In summary, we have characterized the zebra finch ortholog of FMRP and found elevated levels in the premotor nucleus RA at a key developmental stage for vocal learning. KeywordsFMRP; Songbird; Brain Development; Vocal Learning Fragile X syndrome (FXS) is the most commonly inherited mental retardation, affecting 1:4000 males and 1:6000 females panethnically (O'Donnell and Warren, 2002). The gene encoding the human fragile X mental retardation protein (FMRP in humans; Fmrp in mice and rats; TguFmrp in zebra finch [Taeniopygia guttata]) is FMR1; FXS primarily results from the absence of FMRP . FMRP is an RNA-binding protein involved in localization and translation regulation of its mRNA cargos (Terracciano et al., 2005). The FMR1 gene is expressed ubiquitously in the body, excluding the muscles, and predominantly in the testes and brain (Bächner et al., 1993, Devys et al., 1993, Hergersberg et al., 1995. Within the brain the protein is primarily neuronal (Devys et al., 1993), predominantly in the cytoplasm. Furthermore, it has been observed in both dendrites (Feng et al., 1997 Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. , 1997, Greenough et al., 2001, Ling et al., 2004, Antar et al., 2005 and axons (Antar et al., 2006, Price et al., 2006, Tessier and Broadie, 2008a. NIH Public AccessMales with FXS exhibit delays in speech and language development (Ferrando-Lu...
The fragile X family of genes encodes a small family of RNA binding proteins including FMRP, FXR1P and FXR2P that were identified in the 1990s. All three members are encoded by 17 exons and show alternative splicing at the 3' ends of their respective transcripts. They share significant homology in the protein functional domains, including the Tudor domains, the nuclear localization sequence, a protein-protein interaction domain, the KH1 and KH2 domains and the nuclear export sequence. Fragile X family members are found throughout the animal kingdom, although all three members are not consistently present in species outside of mammals: only two family members are present in the avian species examined, Gallus gallus and Taeniopygia guttata, and in the frog Xenopus tropicalis. Although present in many tissues, the functions of the fragile X family members differ, which are particularly evident in knockout studies performed in animals. The fragile X family members play roles in normal neuronal function and in the case of FXR1, in muscle function.
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and presents with markedly atypical speech-language, likely due to impaired vocal learning. Although current models have been useful for studies of some aspects of FXS, zebra finch is the only tractable lab model for vocal learning. The neural circuits for vocal learning in the zebra finch have clear relationships to the pathways in the human brain that may be affected in FXS. Further, finch vocal learning may be quantified using software designed specifically for this purpose. Knockdown of the zebra finch FMR1 gene may ultimately enable novel tests of therapies that are modality-specific, using drugs or even social strategies, to ameliorate deficits in vocal development and function. In this chapter, we describe the utility of the zebra finch model and present a hypothesis for the role of FMRP in the developing neural circuitry for vocalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.