Histidine phosphorylation plays a key role in prokaryotic signaling and accounts for approximately 6% of the protein phosphorylation events in eukaryotics. Phosphohistidines generally act as intermediates in the transfer of phosphate groups from donor to acceptor molecules. Examples include the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) and the histidine kinases found in two-component signal transduction pathways. The latter are utilized by bacteria and plants to sense and adapt to changing environmental conditions. Despite the importance of histidine phosphorylation in two-component signaling systems, relatively few proteins have so far been identified as containing phosphorylated histidine residues. This is largely due to the instability of phosphohistidines, which, unlike the phosphoesters formed by serine, threonine, and tyrosine, are labile and susceptible to acid hydrolysis. Nevertheless, it is possible to preserve and identify phosphorylated histidine residues in target proteins using appropriate sample preparation, affinity purification, and mass spectrometric techniques. This chapter provides a brief overview of such techniques, describes their use in confirming histidine phosphorylation of a known PTS protein (HPr), and suggests how this approach might be adapted for large-scale identification of histidinephosphorylated proteins in two-component systems.[27]identification of histidine phosphorylations 549
Risk scenarios are caused by the convergence of a hazard with a potentially affected system in a specific place and time. One urban planning goal is to prevent environmental hazards, such as those generated by chemical accidents, from reaching human settlements, as they can cause public health issues. However, in many developing countries, due to their strategic positioning in global value chains, the quick and easy access to labor pools, and competitive production costs, urban sprawls have engulfed industrial areas, exposing residential conurbations to environmental hazards. This case study analyzes the spatial configuration of accidental chemical risk scenarios in three major Mexican metropolitan areas: Mexico City, Guadalajara, and Monterrey. Spatial analyses use an areal locations of hazardous atmosphere (ALOHA) dispersion model to represent the spatial effects of high-risk industrial activities in conurbations and the potentially affected populations vulnerable to chemical hazards. Complementary geostatistical correlation analyses use population data, marginalization indexes, and industrial clustering sectors to identify trends that can lead to comprehensive environmental justice approaches. In addition, the marginalization degree of inhabitants evaluates social inequalities concerning chemical risk scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.