Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposomebased systems for clinical use to market.
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach.
The ability to cryopreserve natural killer (NK) cells has a significant potential in modern cancer immunotherapy. Current cryopreservation protocols cause deterioration in NK cell viability and functionality. This work reports the preservation of human cytokine‐activated NK cell viability and function following cryopreservation using a cocktail of biocompatible bioinspired cryoprotectants (i.e., dextran and carboxylated ε‐poly‐L‐lysine). Results demonstrate that the recovered NK cells after cryopreservation and rewarming maintain their viability immediately after thawing at a comparable level to control (dimethyl sulfoxide‐based cryopreservation). Although, their viability drops in the first day in culture compared to controls, the cells grow back to a comparable level to controls after 1 week in culture. In addition, the anti‐tumor functional activity of recovered NK cells demonstrates higher cytotoxic potency against leukemia cells compared to control. This approach presents a new direction for NK cell preservation, focusing on function and potentially enabling storage and distribution for cancer immunotherapy.
Continued growth in the cell therapy industry and commercialization of cell therapies that successfully advance through clinical trials has led to increased awareness around the need for specialized and complex materials utilized in their manufacture. Ancillary materials (AMs) are components or reagents used during the manufacture of cell therapy products but are not intended to be part of the final products. Commonly, there are limitations in the availability of clinical-grade reagents used as AMs. Furthermore, AMs may affect the efficacy of the cell product and subsequent safety of the cell therapy for the patient. As such, AMs must be carefully selected and appropriately qualified during the cell therapy development process. However, the ongoing evolution of cell therapy research, limited number of clinical trials and registered cell therapy products results in the current absence of specific regulations governing the composition, compliance, and qualification of AMs often leads to confusion by suppliers and users in this field. Here we provide an overview and interpretation of the existing global framework surrounding AM use and investigate some common misunderstandings within the industry, with the aim of facilitating the appropriate selection and qualification of AMs. The key message we wish to emphasize is that in order to most effectively mitigate risk around cell therapy development and patient safety, users must work with their suppliers and regulators to qualify each AM to assess source, purity, identity, safety, and suitability in a given application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.