The immunopurification of the endogenous cytoplasmic murine histone deacetylase 6 (mHDAC6), a member of the class II HDACs, from mouse testis cytosolic extracts allowed the identification of two associated proteins. Both were mammalian homologues of yeast proteins known to interact with each other and involved in the ubiquitin signaling pathway: p97/VCP/Cdc48p, a homologue of yeast Cdc48p, and phospholipase A2-activating protein, a homologue of yeast UFD3 (ubiquitin fusion degradation protein 3). Moreover, in the C-terminal region of mHDAC6, a conserved zinc finger-containing domain named ZnF-UBP, also present in several ubiquitin-specific proteases, was discovered and was shown to mediate the specific binding of ubiquitin by mHDAC6. By using a ubiquitin pull-down approach, nine major ubiquitin-binding proteins were identified in mouse testis cytosolic extracts, and mHDAC6 was found to be one of them. All of these findings strongly suggest that mHDAC6 could be involved in the control of protein ubiquitination. The investigation of biochemical properties of the mHDAC6 complex in vitro further supported this hypothesis and clearly established a link between protein acetylation and protein ubiquitination.An increasing number of histone deacetylases (HDACs) are being characterized in higher eukaryotes. These proteins have been grouped in distinct families according to the similarity of their sequence to a yeast founding member. Class I HDACs are homologous to yeast RPD3, while class II members are related to yeast HDA1 and class III members are related to yeast SIR2 deacetylase (13,20). Class I HDACs are found in various nuclear multiprotein complexes containing either HDAC1/2 or HDAC3. Class II HDACs show the interesting property of being capable of a nucleocytoplasmic shuttling. Indeed, all of the class II HDACs, HDAC4, -5, -6, and -7, are subject to a regulated intracellular localization (20). Although there is evidence for a role for some of these HDACs in transcriptional repression, their possible function in the cytoplasm remains elusive (20,21). Within these enzymes, the endogenous HDAC6 was found to be essentially cytoplasmic (2, 37). A fraction of the murine HDAC6 (mHDAC6) translocates, however, in the nucleus under specific circumstances, such as arrest of cell proliferation (37). In order to gain an insight into the function of cytoplasmic HDACs, cytosolic mHDAC6 was immunopurified from mouse testis cytosolic extracts. The identified mHDAC6-associated proteins showed striking sequence homology to yeast regulatory proteins involved in the control of protein ubiquitination. These proteins are the mammalian homologue of yeast UFD3, known as phospholipase A2-activating protein (PLAP) (12), as well as the homologue of yeast Cdc48p AAA ATPase (p97/VCP/Cdc48p) (11). The UFD pathway was discovered in yeast after the observation that a protein containing a nonremovable N-terminal ubiquitin (Ub) moiety had a short half-life (19). The protein degradation pathway involved was called UFD, for Ub fusion degradation. A ...
The intracellular localization, and thereby the function, of a number of key regulator proteins tagged with a short leucine-rich motif (the nuclear export signal or NES) is controlled by CRM1/exportin1, which is involved in the export of these proteins from the nucleus [1]. A common characteristic of these regulators is their transient action in the nucleus during either a specific phase of the cell cycle or in response to specific signals [1]. Here, we show that a particular member of the class II histone-deacetylases mHDA2/mHDAC6 [2] belongs to this family of cellular regulators that are present predominantly in the cytoplasm, but are also capable of shuttling between the nucleus and the cytoplasm. A very potent NES present at the amino terminus of mHDAC6 was found to play an essential role in this shuttling process. The sub-cellular localization of mHDAC6 appeared to be controlled by specific signals, since the arrest of cell proliferation was found to be associated with the translocation of a fraction of the protein into the nucleus. Data presented here suggest that mHDAC6 might be the first member of a functionally distinct class of deacetylases, responsible for activities not shared by other known histone deacetylases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.