Saccharomyces cerevisiae contains eight members of a novel and fungus-specific family of bZIP proteins that is defined by four atypical residues on the DNA-binding surface. Two of these proteins, Yap1 and Yap2, are transcriptional activators involved in pleiotropic drug resistance. Although initially described as AP-1 factors, at least four Yap proteins bind most efficiently to TTACTAA, a sequence that differs at position ؎2 from the optimal AP-1 site (TGACTCA); further, a Yap-like derivative of the AP-1 factor Gcn4 (A239Q S242F) binds efficiently to the Yap recognition sequence. Molecular modeling suggests that the Yap-specific residues make novel contacts and cause physical constraints at the ؎2 position that may account for the distinct DNA-binding specificities of Yap and AP-1 proteins. To various extents, Yap1, Yap2, Yap3, and Yap5 activate transcription from a promoter containing a Yap recognition site. Yap-dependent transcription is abolished in strains containing high levels of protein kinase A; in contrast, Gcn4 transcriptional activity is stimulated by protein kinase A. Interestingly, Yap1 transcriptional activity is stimulated by hydrogen peroxide, whereas Yap2 activity is stimulated by aminotriazole and cadmium. In addition, unlike other yap mutations tested, yap4 (cin5) mutations affect chromosome stability, and they suppress the cold-sensitive phenotype of yap1 mutant strains. Thus, members of the Yap family carry out overlapping but distinct biological functions.
Peroxisomes of Saccharomyces cerevisiae are the exclusive site of fatty acid beta‐oxidation. We have found that fatty acids reach the peroxisomal matrix via two independent pathways. The subcellular site of fatty acid activation varies with chain length of the substrate and dictates the pathway of substrate entry into peroxisomes. Medium‐chain fatty acids are activated inside peroxisomes hby the acyl‐CoA synthetase Faa2p. On the other hand, long‐chain fatty acids are imported from the cytosolic pool of activated long‐chain fatty acids via Pat1p and Pat2p, peroxisomal membrane proteins belonging to the ATP binding cassette transporter superfamily. Pat1p and Pat2p are the first examples of membrane proteins involved in metabolite transport across the peroxisomal membrane.
A novel form of post-transcriptional control is described. The 5Ј untranslated region (5ЈUTR) of the Saccharomyces cerevisiae gene encoding the AP1-like transcription factor Yap2 contains two upstream open reading frames (uORF1 and uORF2). The YAP2-type of uORF functions as a cis-acting element that attenuates gene expression at the level of mRNA turnover via termination-dependent decay. Release of post-termination ribosomes from the YAP2 5ЈUTR causes accelerated decay which is largely independent of the termination modulator gene UPF1. Both of the YAP2 uORFs contribute to the destabilization effect. A G/Crich stop codon context, which seems to promote ribosome release, allows an uORF to act as a transferable 5ЈUTR-destabilizing element. Moreover, termination-dependent destabilization is potentiated by stable secondary structure 3Ј of the uORF stop codon. The potentiation of uORF-mediated destabilization is eliminated if the secondary structure is located further downstream of the uORF, and is also influenced by a modulatory mechanism involving eIF2. Destabilization is therefore linked to the kinetics of acquisition of reinitiation-competence by post-termination ribosomes in the 5ЈUTR. Our data explain the destabilizing properties of YAP2-type uORFs and also support a more general model for the mode of action of other known uORFs, such as those in the GCN4 mRNA.
In this report, we describe the isolation of a 4020‐bp genomic PstI fragment of Desulfovibrio gigas harboring the aldehyde oxido‐reductase gene. The aldehyde oxido‐reductase gene spans 2718 bp of genomic DNA and codes for a protein with 906 residues. The protein sequence shows an average 52% (± 1.5%) similarity to xanthine dehydrogenase from different organisms. The codon usage of the aldehyde oxidoreductase is almost identical to a calculated codon usage of the Desulfovibrio bacteria.
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in
Saccharomyces cerevisiae
, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.