The sequential two-electron reduction of benzaldehyde to the radical anion and dianion species in 1-butyl-3-methylimidazolium triflimide and 1-butyl-1-methylpyrrolidinium triflimide is reported. In 1-butyl-1-methylpyrrolidinium triflimide, the heterogeneous electrochemistry and follow-up chemical reactivity are essentially equivalent to that in conventional molecular-solvent-based electrolytes where no interaction with the media is observed. In 1-butyl-3-methylimmidazolium triflimide, reduction occurs via the same two heterogeneous processes; however, the apparent heterogeneous rate constants are smaller by ca. 1 order of magnitude which leads to quasi-reversible electrochemical behavior. Since the bulk viscosities of the liquids are similar, the slower heterogeneous kinetics are attributed to local interfacial viscosity due to local ordering in the imidazolium-based medium. Also, a dramatic anodic shift in the reduction potentials is observed in 1-butyl-3-methylimidazolium triflimide media that is attributed to a stabilizing interaction of the radical anion and dianion species with the imidazolium cation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.