The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset (NCT04348656). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm—relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94–1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57–0.95 and OR = 0.66, 95% CI 0.50–0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14–2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.
Summary Bronchoalveolar lavages (BAL) were performed before and after 3 weeks of housing in 5 horses suffering from COPD and 5 normal horses. In the two groups, the total number of cells recovered remained unchanged after stabling. The most common cell populations in BAL fluid of control animals were alveolar macrophages (46.4%) and lymphocytes (44.9%). The percentage of neutrophils increased after stabling from 8.7% to 27.6%. In COPD horses, lymphocytes predominated (40.7%) in animals at pasture with neutrophils increasing from 29.4% to 71.6% after stabling. After fractionation by Percoll density gradient, alveolar macrophages and neutrophils from normal and COPD horses had a similar density distribution. After stabling, these cells from normal horses were increased in the low density layers, while those from COPD horses were predominantly in the hyperdense layers. Therefore, BAL cells obtained from COPD animals at pasture and after stabling differ from those of control horses in the same environment, not only in their populations but also in their buoyant densities. These differences could be related to different states of cellular activation and perhaps be responsible for disease activity in the COPD horses.
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B4 biosynthesis, or LTB4 receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB4 biosynthesis, and an autocrine activation loop involving LTB4 receptor 1.
Basement membrane transmigration is an important step in tissue recruitment of eosinophils into inflamed tissue. Recent reports showed that this phenomenon is modulated by platelet-activating factor (PAF) in combination with cytokines and proteinases. We investigated the in vitro efficacy of 5-oxo-6,8,11, 14-eicosatetraenoic acid (5-oxo-ETE), a metabolite of arachidonic acid and known as a potent eosinophil chemotactic factor, in promoting the transmigration of blood eosinophils from normal and asthmatic subjects through a Matrigel basement membrane. 5-Oxo-ETE proved to be a more potent (> 10-fold) inducer of eosinophil transmigration than PAF, and this effect was similar in cells from normal and asthmatic subjects (82.0 +/- 3.7% and 88.1 +/- 3.7%, respectively). Moreover, 5-oxo-ETE was active in the absence of interleukin (IL)-5, although this cytokine amplified the effect of 5-oxo-ETE from 61.3 +/- 3.3% to 92.8 +/- 1.8% (p = 0.003). The membrane receptor for urokinase plasminogen activator (CD87), a serine protease, was observed on eosinophils, and its expression was increased by IL-5. The inhibition of both metalloproteinases (MMP) and plasmin/plasminogen complex with inhibitor or monoclonal antibodies decreased cell transmigration by about 50%. Combination of an MMP inhibitor with anti-CD87 antibodies had no additive effect. These data show that 5-oxo-ETE is an efficient promoter of eosinophil transmigration in vitro, and is much more potent in this respect than PAF. The data suggest that 5-oxo-ETE could play an important role in eosinophil recruitment in vivo. Moreover, they demonstrate that in addition to MMP, the plasmin/plasminogen system could be involved in eosinophil transmigration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.