Widespread deficits are known to accompany normal aging. Contrast thresholds of older and younger observers were measured for static and drifting gratings defined by luminance (first-order) or by contrast (second-order), and for a temporally segmented second-order motion stimulus. Results showed that older individuals had a larger threshold elevation for the perception of second-order stimuli than for the perception of first-order stimuli. This suggests a dissociation between the mechanisms underlying the perception of first and second-order stimuli, and demonstrates that aging may affect the more numerous processing steps required for the analysis of higher level stimuli.
Detection thresholds for radial deformations of circular contours were measured using a range of radii and contour peak spatial frequencies. For radial frequencies above two cycles, thresholds were found to be a constant fraction of the mean radius across a four-octave range of pattern radii and peak spatial frequencies (mean Weber fraction: 0.003-0.004). At low radial frequencies, thresholds were unaffected by contrast reduction. In 167 ms presentations, subjects were able to identify radial frequencies of six cycles and below with an accuracy of over 90% correct even when phase was randomized. The extreme sensitivity of subjects to these radial deformations (as low as 2-4 s of arc) cannot be explained by local orientation or curvature analysis, and points instead to the global pooling of contour information at intermediate levels of form vision.
Healthy human aging can have adverse effects on cortical function and on the brain's ability to integrate visual information to form complex representations. Facial identification is crucial to successful social discourse, and yet, it remains unclear whether the neuronal mechanisms underlying face perception per se, and the speed with which they process information, change with age. We present face images whose discrimination relies strictly on the shape and geometry of a face at various stimulus durations. Interestingly, we demonstrate that facial identity matching is maintained with age when faces are shown in the same view (e.g., front-front or side-side), regardless of exposure duration, but degrades when faces are shown in different views (e.g., front and turned 20 degrees to the side) and does not improve at longer durations. Our results indicate that perceptual processing speed for complex representations and the mechanisms underlying same-view facial identity discrimination are maintained with age. In contrast, information is degraded in the neural transformations that represent facial identity across views. We suggest that the accumulation of useful information over time to refine a representation within a population of neurons saturates earlier in the aging visual system than it does in the younger system and contributes to the age-related deterioration of face discrimination across views.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.