SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor.
To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.
The transcription factor Hcm1 is a key regulator of chromosome segregation and genome stability. The phosphatase calcineurin directly inactivates Hcm1 in response to environmental stress, which inhibits proliferation. Hcm1 functions as a rheostat, whose phosphorylation state affects the rate of proliferation.
Protein degradation during the cell cycle is controlled by the opposing activities of ubiquitin ligases and deubiquitinating enzymes (DUBs). Although the functions of ubiquitin ligases in the cell cycle have been studied extensively, the roles of DUBs in this process are less well understood. Here, we used an overexpression screen to examine the specificities of each of the 21 DUBs in budding yeast for 37 cell cycle-regulated proteins. We find that DUBs up-regulate specific subsets of proteins, with five DUBs regulating the greatest number of targets. Overexpression of Ubp10 had the largest effect, stabilizing 15 targets and delaying cells in mitosis. Importantly, UBP10 deletion decreased the stability of the cell cycle regulator Dbf4, delayed the G1/S transition, and slowed proliferation. Remarkably, deletion of UBP10 together with deletion of four additional DUBs restored proliferation to near-wild-type levels. Among this group, deletion of the proteasome-associated DUB Ubp6 alone reversed the G1/S delay and restored the stability of Ubp10 targets in ubp10Δ cells. Similarly, deletion of UBP14, another DUB that promotes proteasomal activity, rescued the proliferation defect in ubp10Δ cells. Our results suggest that DUBs function through a complex genetic network in which their activities are coordinated to facilitate accurate cell cycle progression.
The Spike (S)-protein of SARS-CoV-2 binds host-cell receptor ACE2 and requires proteolytic “priming” (S1/S2) and “fusion-activation” (S2’) for viral entry. The S-protein furin-like motifs PRRAR685↓ and KPSKR815↓ indicated that proprotein convertases promote virus entry. We demonstrate that furin and PC5A induce cleavage at both sites, ACE2 enhances S2’ processing, and their pharmacological inhibition (BOS-inhibitors) block endogenous cleavages. S1/S2-mutations (μS1/S2) limit S-protein-mediated cell-to-cell fusion, similarly to BOS-inhibitors. Unexpectedly, TMPRSS2 does not cleave at S1/S2 or S2’, but it can: (i) cleave/inactivate S-protein into S2a/S2b; (ii) shed ACE2; (iii) cleave S1-subunit into secreted S1’, activities inhibited by Camostat. In lung-derived Calu-3 cells, BOS-inhibitors and µS1/S2 severely curtail “pH-independent” viral entry, and BOS-inhibitors alone/with Camostat potently reduce infectious viral titer and cytopathic effects. Overall, our results show that: furin plays a critical role in generating fusion-competent S-protein, and indirectly, TMPRSS2 promotes viral entry, supporting furin and TMPRSS2 inhibitors as potential antivirals against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.