The limbic localization of the arginine vasopressin V1b receptor has prompted speculation as to a potential role of this receptor in the control of emotional processes. To investigate this possibility, we have studied the behavioral effects of SSR149415, the first selective and orally active non-peptide antagonist of vasopressin V 1b receptors, in a variety of classical (punished drinking, elevated plus-maze, and light͞dark tests) and atypical (fear͞anxiety defense test battery and social defeat-induced anxiety) rodent models of anxiety, and in two models of depression [forced swimming and chronic mild stress (CMS)]. When tested in classical tests of anxiety, SSR149415 produced anxiolytic-like activity at doses that ranged from 1 to 30 mg͞kg (i.p. or p.o.), but the magnitude of these effects was overall less than that of the benzodiazepine anxiolytic diazepam, which was used as a positive control. In contrast, SSR149415 produced clear-cut anxiolyticlike activity in models involving traumatic stress exposure, such as the social defeat paradigm and the defense test battery (1-30 mg͞kg, p.o.). In the forced swimming test, SSR149415 (10 -30 mg͞kg, p.o.) produced antidepressant-like effects in both normal and hypophysectomized rats. Moreover, in the CMS model in mice, repeated administration of SSR149415 (10 and 30 mg͞kg, i.p.) for 39 days improved the degradation of the physical state, anxiety, despair, and the loss of coping behavior produced by stress. These findings point to a role for vasopressin in the modulation of emotional processes via the V 1b receptor, and suggest that its blockade may represent a novel avenue for the treatment of affective disorders.A rginine vasopressin (AVP) is a cyclic nonapeptide that is synthesized centrally in the hypothalamus. Although it participates in the hypothalamic-pituitary-adrenal axis, regulating pituitary ACTH (corticotropin) secretion by potentiating the stimulatory effects of corticotropin releasing factor (CRF), extrahypothalamic AVP-containing neurons have been characterized in the rat, notably in the medial amygdala, that innervate limbic structures such as the lateral septum and the ventral hippocampus (1). In these latter structures, AVP was suggested to act as a neurotransmitter, exerting its action by binding to specific G protein-coupled receptors, i.e., V 1a and V 1b (2-4), which are widely distributed in the central nervous system, including the septum, cortex, and hippocampus (2, 5).Because the pioneering studies of David De Wied and colleagues (6, 7), it has been widely accepted that AVP is involved in various types of behavioral processes (8). Early work paid attention to the possible role of this peptide in learning and memory, in particular with regard to avoidance behavior (for review, see ref. 9), but also in antypiresis, scent marking, and social communication (for reviews, see refs. 10 and 11). For instance, several studies showed that centrally administered AVP in rats reverses drug-induced memory loss and affects long-term memory processes, improvi...