Chicken avidin and bacterial streptavidin are widely employed in vitro for their capacity to bind biotin, but their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in medical treatments. Here we investigate the biochemical and biological properties of a new modified avidin, obtained by ligand-assisted sodium periodate oxidation of avidin. This method allows protection of biotin-binding sites of avidin from inactivation caused by the oxidation step and delay of avidin clearance from injected tissue by generation of aldehyde groups from avidin carbohydrate moieties. Oxidized avidin shows spectroscopic properties similar to that of native avidin, indicating that tryptophan residues are spared from oxidation damage. In strict agreement with these results, circular dichroism and isothermal titration calorimetry analyses confirm that the ligand-assisted oxidation preserves the avidin protein structure and its biotin binding capacity. In vitro cell binding and in vivo tissue residence experiments demonstrate that aldehyde groups provide oxidized avidin the property to bind cellular and interstitial protein amino groups through Schiff's base formation, resulting in a tissue half-life of 2 weeks, compared with 2 h of native avidin. In addition, the efficient uptake of the intravenously injected 111 In-Biotin-DOTA (ST2210) in the site previously treated with modified avidin underlines that tissue-bound oxidized avidin retains its biotin binding capacity in vivo. The results presented here indicate that oxidized avidin could be employed to create a stable artificial receptor in diseased tissues for the targeting of biotinylated therapeutics.
Hen egg white avidin is increasingly used in the clinic as part of multifactor treatments such as pretargeted radionuclide therapy of cancer or as an antidote of biotinylated drugs. Taking into account that naturally occurring human antiavidin antibodies (HAVA) are common in humans, the present work investigates avidin immunogenicity as part of risk/benefit evaluations. Sera from 139 oncology patients naive to avidin were confirmed to exhibit HAVA with lognormally distributed titers. HAVA were boosted after avidin treatment, with no correlation with the avidin dose or with the basal titer. No antibody-related clinical symptoms were observed in 21 HAVA-positive patients treated with avidin. In mouse models, high mouse antiavidin antibody titers, induced to simulate the worst human condition, neither reduced the biotin uptake of intratissue-injected avidin nor affected the capacity of intravenously injected avidin to clear a biotinylated drug from circulation. In both models the avidin treatment was well tolerated. Results indicate that avidin immunogenicity does not affect its safety and efficacy, thus encouraging its further use in clinical applications.
Lung cancer, as well as lung metastases from distal primary tumors, could benefit from aerosol treatment. Unfortunately, because of lung physiology, clearance of nebulized drugs is fast, paralleled by unwanted systemic exposure. Here we report that nebulized AvidinOX can act as an artificial receptor for biotinylated drugs. In nude and SCID mice with advanced human KRAS-mutated A549 metastatic lung cancer, pre-nebulization with AvidinOX enables biotinylated Cetuximab to control tumor growth at a dose lower than 1/25,000 the intravenous effective dose. This result correlates with a striking, specific and unpredictable effect of AvidinOX-anchored biotinylated Cetuximab, as well as Panitumumab, observed on a panel of tumor cell lines, leading to inhibition of dimerization and signalling, blockade of endocytosis, induction of massive lysosomal degradation and abrogation of nuclear translocation of EGFR. Excellent tolerability, together with availability of pharmaceutical-grade AvidinOX and antibodies, will allow rapid clinical translation of the proposed therapy.
Avidin is widely used in vitro for its capacity to bind biotin. However, avidin's in vivo use is limited by its short residence in blood and tissues. An avidin variant, named AvidinOX, has been recently described. This product is obtained by 4-hydroxyazobenzene-2'-carboxylic acid-assisted sodium periodate oxidation of avidin. This method generates aldehyde groups from avidin carbohydrates, sparing biotin-binding sites from inactivation. AvidinOX binds cellular and interstitial protein amino groups through Schiff's bases, resulting in a tissue half-life of 2 weeks, compared with 2 hours of native avidin. Binding of AvidinOX occurs in normal and neoplastic tissues. Data show that AvidinOX, administered intranipple in the breast of transgenic BALB/neuT mice, is highly efficient for capturing (90)Y-biotinDOTA, intravenously injected after 48 hours, leading to eradication of multifocal cancer lesions. Efficacy data, together with good tolerability results, indicate that AvidinOX is a highly innovative reagent for tissue-pretargeted radionuclide therapy.
Purpose: In the pretargeted antibody-guided radioimmunotherapy (PAGRIT) system, the combined use of two different antibodies directed against the same tumor antigen could represent a valid approach for improving tumor targeting and therapeutic efficacy. We developed a novel monoclonal antitenascin antibody, ST2485, and studied its biochemical and functional properties by in vitro and in vivo assays. We then investigated the first of the three-step therapy combining ST2485 with another antitenascin antibody, ST2146, previously described, to increase accumulation of biotinylated antibodies at the tumor site. Experimental Design: Studies of immunoreactivity, affinity, immunohistochemistry, and biodistribution in xenograft model were carried out on ST2485. Analysis of the ST2485 and ST2146 combination was preliminary carried out by ELISA and BiaCore tests and then by in vivo distribution studies after administration of the radiolabeled biotinylated antibodies, followed by a chase with avidin as clearing agent. Results: ST2485 was found to be a suitable antibody for therapeutic applications. Indeed, for its behavior in all tests, it was comparable with ST2146 and better than BC2, an antibody already used for clinical trials. The additivity of ST2146 and ST2485 in tenascin C binding, shown by in vitro tests, was confirmed by biodistribution studies in a xenograft model where tumor localization of the antibodies was near the sum of each antibody alone, with a tumorto-blood ratio higher than 24. Conclusion:The results reported in this study suggest that a monoclonal antitenascin antibody mixture can improve tumor targeting. This strategy could represent progress for therapeutic approaches such as PAGRIT.Radioimmunotherapy using monoclonal antibodies (mAb) is a first-line strategy in cancer treatment because of its ability to specifically target cancer cells. The pretargeted antibody-guided radioimmunotherapy (PAGRIT) consists of the sequential administration of a biotinylated mAb, avidin/streptavidin, and a radiolabeled biotin molecule, leading to specific accumulation of radioactivity at the tumor site implemented by the multiple valence of avidin/streptavidin toward biotin.Among the several tumor antigens identified as possible targets for antibody mediated therapy, tenascin C seems to be a good candidate for the treatment of several solid tumors (1, 2). Tenascin C is an extracellular hexameric glycoprotein whose monomer is composed of repeating epidermal growth factor (EGF)-like units followed by fibronectin-type repeats and a domain with homology to fibrinogen at the carboxy terminus. Alternative splicing in the A-D region of the fibronectin-type repeats gives rise to monomers of different sizes, whose longer form has been correlated with tumor phenotype (3). In the brain tumor, tenascin C is predominantly present in the extracellular matrix and the hyperplastic blood vessels, suggesting some role in the neovascularization of malignant gliomas (4). Both direct and pretargeted therapeutic approaches with lab...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.