A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Pelaez et al. (Celest Mech Dyn Astron 97(2): 131-150, 2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Pelaez's method for near-circular motion under the J2 perturbation is transformed into linear. Moreover, the method reveals to be competitive with two very popular element methods derived from the Kustaanheimo-Stiefel and SperlingBurdet regularizations.
International audienceAn analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error
We propose two time elements for the orbit propagator named Dromo. One is linear and the other constant with respect to the independent variable, which coincides with the osculating true anomaly in the Keplerian motion. They are defined from a generalized Kepler's equation written for negative values of the total energy and, unlike the few existing time elements of this kind, are free of singularities. To our knowledge it is the first time that a constant time element is associated with a second-order Sundman time transformation. Numerical tests to assess the performance of the Dromo method equipped with a time element show the remarkable improvement in accuracy for the perturbed bounded motion around the Earth compared to the case in which the physical time is a state variable. Moreover, the method is competitive with and even better than other efficient sets of elements. Finally, we also derive a time element for a null and positive total energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.